Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories

合作研究:深度学习的新视角:桥接近似、统计和算法理论

基本信息

  • 批准号:
    2134077
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Deep Learning (DL) has led to a renaissance in neural network methods in data-driven science and engineering. The development of DL systems and applications, including computer vision and natural language understanding, has been led primarily by experiments and engineering practice. Mathematical analysis has only begun to provide insights into these complex machine learning systems. The lack of basic understanding has contributed to serious challenges and shortcomings ranging from the fragility and susceptibility to corrupted data to their uninterpretable behaviors. These problems can be traced to fundamental gaps in the mathematical understanding of DL. This project tackles this challenge by bringing approximation, statistical, and algorithmic theories together to develop new mathematical foundations for DL. The goals of the project are to mathematically characterize the strengths and limitations of DL models, and to understand the properties of DL models trained using examples of desired behavior (training data) as well as the tradeoffs between the performance of DL systems and the training dataset size. While DL is already in widespread use, the continued success of DL requires far more complete mathematical understandings and principled approaches to guide its use and reliable application. The project will provide practitioners with clearer guidance on the strengths, limitations, and best approaches to using DL. Broader impacts of the project also include education and mentoring, including the training of graduate students in mathematical fields such as approximation theory, signal processing, statistics, and machine learning and, most importantly, how these fields collectively inform the theory and practice of DL.DL seeks to learn an unknown function from data using compositions (layers) of linear combinations of simple functions (neurons). The shortcomings of DL can be traced to fundamental gaps in its mathematical theory including the following issues. The function spaces that capture the salient properties of DL applications are poorly understood. The characteristics of functions learned through neural network training are mysterious. The ability of DL models to discriminate between data distributions has not yet been quantified satisfactorily. Understanding of the tradeoffs between accuracy and training set size is lacking. This project tackles these challenges by bringing approximation, statistical, and algorithmic theories together to develop new theoretical foundations for DL. This project builds innovative bridges between approximation theory, nonparametric statistics, learning theory and algorithms to develop new mathematical foundations for DL. This includes the development of new model classes of functions that are naturally suited to characterize the properties, strengths, and limitations of deep neural network architectures and applications; novel approaches to understand the roles of regularization and sparsity in DL; fundamental frameworks to quantify the discrimination power of DL and generalized adversarial networks; and innovative theory to make DL algorithms more data efficient through the use of side-information, partial differential equations, and richer forms of data than the conventional function evaluations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习 (DL) 引领了数据驱动科学和工程中神经网络方法的复兴。深度学习系统和应用程序(包括计算机视觉和自然语言理解)的开发主要由实验和工程实践主导。数学分析才刚刚开始为这些复杂的机器学习系统提供见解。缺乏基本的理解导致了严重的挑战和缺陷,从脆弱性和易受损坏的数据到其难以解释的行为。 这些问题可以追溯到对深度学习的数学理解上的根本差距。该项目通过将近似理论、统计理论和算法理论结合起来,为深度学习开发新的数学基础,从而应对这一挑战。该项目的目标是从数学上描述深度学习模型的优点和局限性,并了解使用所需行为示例(训练数据)训练的深度学习模型的属性,以及深度学习系统性能和训练数据集之间的权衡尺寸。虽然深度学习已经得到广泛使用,但深度学习的持续成功需要更完整的数学理解和原则性方法来指导其使用和可靠的应用。该项目将为从业者提供关于使用深度学习的优势、局限性和最佳方法的更清晰的指导。该项目更广泛的影响还包括教育和指导,包括对近似理论、信号处理、统计和机器学习等数学领域的研究生进行培训,最重要的是,这些领域如何共同影响深度学习的理论和实践。深度学习寻求使用简单函数(神经元)线性组合的组合(层)从数据中学习未知函数。深度学习的缺点可以追溯到其数学理论的根本缺陷,包括以下问题。人们对捕捉深度学习应用显着特性的函数空间知之甚少。通过神经网络训练学习到的函数的特征是神秘的。深度学习模型区分数据分布的能力尚未得到令人满意的量化。缺乏对准确性和训练集大小之间权衡的理解。该项目通过将近似理论、统计理论和算法理论结合起来,为深度学习开发新的理论基础,从而应对这些挑战。该项目在近似理论、非参数统计、学习理论和算法之间建立了创新桥梁,为深度学习开发新的数学基础。这包括开发新的函数模型类别,这些函数自然适合表征深度神经网络架构和应用的属性、优势和局限性;理解深度学习中正则化和稀疏性作用的新方法;量化深度学习和广义对抗网络的辨别能力的基本框架;和创新理论,通过使用辅助信息、偏微分方程和比传统函数评估更丰富的数据形式,使深度学习算法的数据效率更高。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lipschitz widths
利普希茨宽度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    G. Petrova, P. Wojtaszczyk
  • 通讯作者:
    G. Petrova, P. Wojtaszczyk
On the entropy numbers and the Kolmogorov widths
  • DOI:
    10.48550/arxiv.2203.00605
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Petrova;P. Wojtaszczyk
  • 通讯作者:
    G. Petrova;P. Wojtaszczyk
Neural Network Approximation of Refinable Functions
可求函数的神经网络逼近
  • DOI:
    10.1109/tit.2022.3199601
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Daubechies, Ingrid;DeVore, Ronald;Dym, Nadav;Faigenbaum-Golovin, Shira;Kovalsky, Shahar Z.;Lin, Kung-Chin;Park, Josiah;Petrova, Guergana;Sober, Barak
  • 通讯作者:
    Sober, Barak
Optimal Learning
Neural networks: deep, shallow, or in between?
神经网络:深层、浅层还是介于两者之间?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guergana Petrova其他文献

Food allergy as one of the faces of primary immunodeficiency
食物过敏是原发性免疫缺陷的表现之一
  • DOI:
    10.37349/eaa.2024.00029
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Polina Kostova;V. Papochieva;Martin Shahid;Guergana Petrova
  • 通讯作者:
    Guergana Petrova

Guergana Petrova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guergana Petrova', 18)}}的其他基金

Computational Challenges in Fluid Transport and Imaging
流体传输和成像的计算挑战
  • 批准号:
    0810869
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Approximation and Learning in High Dimensions
高维逼近和学习
  • 批准号:
    0708470
  • 财政年份:
    2007
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Analysis and Numerical Algorithms for Transport Equations and Related Problems
输运方程及相关问题的分析和数值算法
  • 批准号:
    0505501
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Analytical and Numerical Methods for Transport Equations
输运方程的分析和数值方法
  • 批准号:
    0104112
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Analytical and Numerical Methods for Transport Equations
输运方程的分析和数值方法
  • 批准号:
    0296020
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
  • 批准号:
    32370967
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于国人脊柱矢状位序列新分型的腰椎-躯干三维运动研究
  • 批准号:
    82302739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新媒体环境下信息茧房的形成演化机理及破解策略研究
  • 批准号:
    72371026
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
弹性超声预测免疫调节型三阴性乳腺癌新辅助化疗联合免疫治疗的机制研究
  • 批准号:
    82371978
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
新烟碱农药为前体的氯代消毒副产物形成机制与毒性效应研究
  • 批准号:
    42307532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了