Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
基本信息
- 批准号:RGPIN-2021-03650
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plastic scintillators are near-ideal radiation detectors. They produce light when exposed to radiation, and the light can be collected with an optical reader. Their use is common in radiation therapy and particle physics for high energy x-ray or particle detections. To date, these detectors have not reached their full potential partly because of the limitations in shape and design. Plastic scintillators are available commercially in standard forms such as slabs, cubes, cylinders, spheres, or fibres. Production of good quality scintillators is a time-consuming process that requires specialized expertise, space, and equipment. Typically, a user would have to apply the scintillators as purchased. If customized shapes or light-output characteristics are desired, the purchase could be prohibitively costly. Recent advances in 3D printing technology have resulted in producing a myriad of relatively low-cost consumer-grade printers. 3D printing is ideal for the rapid manufacturing of unique end products or small batches of products with bespoke or complex geometries. The users can rapidly create complex shapes that would otherwise be difficult, costly, and time-consuming to produce by traditional techniques. We aim to apply accessible 3D printing solutions to delivering high-quality and affordable plastic scintillators with custom-designed shape and light-output characteristics. Our immediate application is to use plastic scintillators for reading patients' radiation dose during radiation therapy treatments, the so-called in-vivo dose. Radiation therapy treatments are carefully planned, checked, and verified before the patient comes to the clinic. Still, once the treatment begins, there is most often no direct monitoring of the patient's radiation dose, which can be variable with the patient position, anatomical change, or inadvertent deviations in the treatment unit's performance. We want to integrate 3D printed scintillators into 3D printed devices worn by patients during treatments and read the light produced by radiation. Such routine in-vivo measurements would prevent accidents in radiation therapy, ensure that the intended dose is delivered, and, over time, serve to provide clinicians with invaluable information about the relationships between the outcomes and actual doses. The research and development in this project are also highly valuable in other fields besides medicine. This new technique could open up new possibilities for the field of particle detection. A successful 3D-printed plastic scintillator detector could pave the way for broader use of this technology in detector building, which could shake up the field of high-energy physics where large-scale custom-designed detectors have been prohibitively expensive for most applications. Such accessible large-scale and custom-designed detectors have immediate applications in detection of neutrinos.
塑料闪光灯是近乎理想的辐射探测器。它们在暴露于辐射时会产生光,并且可以使用光学读取器收集光。它们在辐射疗法和颗粒物理学中很常见用于高能量X射线或粒子检测。迄今为止,这些探测器尚未达到其全部潜力,部分原因是形状和设计的局限性。塑料闪光灯以标准形式在商业上购买,例如板,立方体,圆柱体,球形或纤维。高质量闪光灯的生产是一个耗时的过程,需要专业的专业知识,空间和设备。通常,用户必须按购买的闪烁体应用。如果需要定制的形状或轻出输出特性,则购买可能是合理的成本。 3D打印技术的最新进展导致生产无数相对低成本的消费级打印机。 3D打印是快速生产独特的最终产品或具有定制或复杂几何形状的少量产品的理想选择。用户可以迅速创建复杂的形状,否则这些形状否则会很困难,昂贵且耗时,可以通过传统技术产生。我们的目标是将可访问的3D打印解决方案应用于具有定制设计和轻出色特征的高质量和负担得起的塑料闪烁体。我们的立即应用是使用塑料闪烁体在放射治疗期间读取患者的辐射剂量,即所谓的体内剂量。在患者来诊所之前,仔细计划,检查和验证放射治疗。尽管如此,一旦治疗开始,通常通常不会直接监测患者的辐射剂量,这在患者位置,解剖学变化或治疗单元的表现中可能会变化。我们希望将3D打印的闪光灯集成到治疗过程中患者穿着的3D打印设备中,并阅读辐射产生的光。这种常规的体内测量结果将防止放射治疗中发生事故,确保递送预期的剂量,并随着时间的流逝,为临床医生提供有关结果与实际剂量之间关系的宝贵信息。该项目的研究与发展在医学以外的其他领域也很有价值。这项新技术可以为粒子检测领域打开新的可能性。成功的3D打印塑料闪烁体检测器可以为在检测器建设中更广泛使用该技术铺平道路,这可能会使大型定制设计的探测器在大多数应用中都非常昂贵。这种可访问的大规模和定制设计的检测器在检测神经元中立即应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monajemi, ThalatTheresa其他文献
Monajemi, ThalatTheresa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monajemi, ThalatTheresa', 18)}}的其他基金
Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
- 批准号:
DGECR-2021-00407 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Illuminating the future of radiotherapy: 3D printed scintillation detectors
照亮放射治疗的未来:3D 打印闪烁探测器
- 批准号:
RGPIN-2021-03650 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高温与臭氧复合暴露对我国心脑血管疾病寿命损失年的区域分异影响及未来风险预估研究
- 批准号:42305191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球干旱生态区未来干旱胁迫风险的约束校正预估
- 批准号:42305184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向未来交通环境的城市共乘出行智能优化方法研究
- 批准号:42371467
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
计及制造历史健康溯源与未来寿命早期预测的电池分选成组方法研究
- 批准号:62373224
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
簇视角下武陵山区生态系统服务的时空变化、相互作用及未来管理
- 批准号:42367070
- 批准年份:2023
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
- 批准号:
10715019 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
- 批准号:
10761630 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Early response to radiotherapy and immunotherapy in rectal cancer: an integrated molecular, cellular, and spatial approach
直肠癌放疗和免疫治疗的早期反应:综合分子、细胞和空间方法
- 批准号:
10737592 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: