Controlling Quantum Materials: Exotic Orders and Light-Induced Dynamics

控制量子材料:奇异的秩序和光致动力学

基本信息

  • 批准号:
    RGPIN-2021-03214
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

What principles governs the collective quantum behaviour of electrons in a crystalline solid? Can one tune quantum phases of electrons by controlling dimensionality? Can light be used to control and switch between many-body quantum states of electrons? Exploring these important issues is crucial to gain a fundamental understanding of quantum condensed matter systems, and it holds the key to creating and controlling quantum materials which can lay the foundation for the next generation of quantum technologies. The equilibrium and dynamical properties of electrons in crystals are governed by the laws of quantum mechanics, together with quantum statistics as encoded in the Pauli exclusion principle. Examples of such crystals, which include silicon, the workhorse of the semiconductor industry, are extremely well-understood within the framework of band theory and Fermi liquid theory. However, when strong electron interactions become important in a crystal, the electrons can organize into remarkable new states leading to superconductivity, colossal magnetoresistance, or electronic liquid crystals. Transition metal oxides provide a canonical example of such ``emergent'' behavior, exhibiting a plethora of new collective phases, with a slew of applications such as solid state drives, catalysts, and photovoltaics. In recent years, it has been recognized that relativistic spin-orbit coupling can impart new topological character to electronic bands in solids with the potential for novel devices and the promise of new directions in the field of quantum computing. The five-year research programme outlined in this proposal focuses on two intertwined threads of research. The first thread aims to explore and understand the optical properties of exotic orders which appear in quantum materials such as heavy transition metal oxides, halides, and chalcogenides. These are quantum materials which exhibit strong atomic spin-orbit coupling, which leads to the emergence of topological phases, unconventional superconducting and magnetic orders, both in bulk crystals as well in two-dimensional thin films and interfaces. The second intertwined thread of the research deals with how one might control and manipulate such quantum materials and their electronic phases using light. The proposed research will focus on optical properties such as THz conductivity and Kerr effects, ultrafast pump-probe dynamics, and switching between electronic states of matter using optically driving of phonon modes. The proposed research will utilize numerical tools including Gutzwiller projected wavefunction techniques, high frequency expansions, strong coupling expansions, and novel methods to treat the dynamics of correlated electrons.
什么原理控制着晶体固体中电子的集体量子行为?可以通过控制维度来调整电子的量子相位吗?光可以用来控制和切换电子的多体量子态吗?探索这些重要问题对于获得对量子凝聚态系统的基本理解至关重要,并且掌握着创造和控制量子材料的关键,而量子材料可以为下一代量子技术奠定基础。晶体中电子的平衡和动力学性质受量子力学定律以及泡利不相容原理中编码的量子统计的控制。这种晶体的例子,包括半导体工业的主力硅,在能带理论和费米液体理论的框架内得到了很好的理解。然而,当强电子相互作用在晶体中变得重要时,电子可以组织成显着的新状态,从而产生超导性、巨大磁阻或电子液晶。过渡金属氧化物提供了这种“新兴”行为的典型例子,表现出大量新的集体相,具有固态驱动、催化剂和光伏等一系列应用。近年来,人们已经认识到相对论自旋轨道耦合可以赋予固体中的电子能带新的拓扑特征,具有新型器件的潜力,并有望在量子计算领域开辟新的方向。该提案中概述的五年研究计划侧重于两条相互交织的研究线索。第一个主题旨在探索和理解重过渡金属氧化物、卤化物和硫族化物等量子材料中出现的奇异有序的光学性质。这些量子材料表现出强烈的原子自旋轨道耦合,从而导致在块状晶体以及二维薄膜和界面中出现拓扑相、非常规超导和磁序。该研究的第二条相互交织的线索涉及如何利用光来控制和操纵这种量子材料及其电子相。拟议的研究将重点关注太赫兹电导率和克尔效应等光学特性、超快泵浦探针动力学以及使用声子模式的光学驱动在物质电子态之间切换。拟议的研究将利用数值工具,包括 Gutzwiller 投影波函数技术、高频展开、强耦合展开以及处理相关电子动力学的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paramekanti, Arun其他文献

Double Perovskite Heterostructures: Magnetism, Chern Bands, and Chern Insulators
  • DOI:
    10.1103/physrevlett.113.077203
  • 发表时间:
    2014-08-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cook, Ashley M.;Paramekanti, Arun
  • 通讯作者:
    Paramekanti, Arun
Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid
  • DOI:
    10.1103/physrevlett.116.137202
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Hickey, Ciaran;Cincio, Lukasz;Paramekanti, Arun
  • 通讯作者:
    Paramekanti, Arun
Pseudo-Landau levels of Bogoliubov quasiparticles in strained nodal superconductors
  • DOI:
    10.1103/physrevb.96.224516
  • 发表时间:
    2017-12-28
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Massarelli, Geremia;Wachtel, Gideon;Paramekanti, Arun
  • 通讯作者:
    Paramekanti, Arun
Multiband superfluidity and superfluid-to-band-insulator transition of strongly interacting fermionic atoms in an optical lattice
  • DOI:
    10.1103/physreva.79.043626
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Burkov, A. A.;Paramekanti, Arun
  • 通讯作者:
    Paramekanti, Arun
Neel to dimer transition in spin-S antiferromagnets: Comparing bond operator theory with quantum Monte Carlo simulations for bilayer Heisenberg models
  • DOI:
    10.1103/physrevb.84.214412
  • 发表时间:
    2011-12-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ganesh, R.;Isakov, Sergei V.;Paramekanti, Arun
  • 通讯作者:
    Paramekanti, Arun

Paramekanti, Arun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paramekanti, Arun', 18)}}的其他基金

Controlling Quantum Materials: Exotic Orders and Light-Induced Dynamics
控制量子材料:奇异的秩序和光致动力学
  • 批准号:
    RGPIN-2021-03214
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Transition Metal Oxides: Emergent Phases and Interfaces
过渡金属氧化物:涌现相和界面
  • 批准号:
    RGPIN-2016-06337
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Transition Metal Oxides: Emergent Phases and Interfaces
过渡金属氧化物:涌现相和界面
  • 批准号:
    RGPIN-2016-06337
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Transition Metal Oxides: Emergent Phases and Interfaces
过渡金属氧化物:涌现相和界面
  • 批准号:
    RGPIN-2016-06337
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Transition Metal Oxides: Emergent Phases and Interfaces
过渡金属氧化物:涌现相和界面
  • 批准号:
    RGPIN-2016-06337
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Transition Metal Oxides: Emergent Phases and Interfaces
过渡金属氧化物:涌现相和界面
  • 批准号:
    RGPIN-2016-06337
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Strong correlation physics in low dimensional quantum materials and ultracold atomic gases - novel states of matter and their applications
低维量子材料和超冷原子气体中的强相关物理——新的物质态及其应用
  • 批准号:
    327120-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Strong correlation physics in low dimensional quantum materials and ultracold atomic gases - novel states of matter and their applications
低维量子材料和超冷原子气体中的强相关物理——新的物质态及其应用
  • 批准号:
    327120-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Strong correlation physics in low dimensional quantum materials and ultracold atomic gases - novel states of matter and their applications
低维量子材料和超冷原子气体中的强相关物理——新的物质态及其应用
  • 批准号:
    327120-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Strong correlation physics in low dimensional quantum materials and ultracold atomic gases - novel states of matter and their applications
低维量子材料和超冷原子气体中的强相关物理——新的物质态及其应用
  • 批准号:
    327120-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

高锗含量硅锗量子阱材料及器件胶基微工艺热致应力控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁性二维材料、异质结的可控制备及其新型量子器件
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
新型拓扑量子材料的探索和可控制备
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    80 万元
  • 项目类别:
    重大研究计划
三维氮掺杂石墨烯碳纳米管复合材料和氮掺杂石墨烯量子点的可控制备及电化学性能研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
Sb2S3量子点的可控制备及电化学储钾性能研究
  • 批准号:
    51904342
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Controlling Quantum Materials: Exotic Orders and Light-Induced Dynamics
控制量子材料:奇异的秩序和光致动力学
  • 批准号:
    RGPIN-2021-03214
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Developing a design principle of high strength/high ductility age-hardenable Aluminum alloys based hierarchical structure by controlling nano-scale structural components
通过控制纳米级结构成分,开发基于高强度/高延展性时效硬化铝合金的分级结构的设计原理
  • 批准号:
    20H02479
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of photo-physical properties of semiconductor quantum dot superlattices by systematic controlling the transfer integral
通过系统控制转移积分研究半导体量子点超晶格的光物理性质
  • 批准号:
    19K23654
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Controlling Emergent Orders in Quantum Materials
控制量子材料中的紧急秩序
  • 批准号:
    EP/R032130/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Controlling Emergent Orders in Quantum Materials
控制量子材料中的紧急秩序
  • 批准号:
    EP/R031924/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了