A physics-based approach to artificial intelligence for understanding of biophysical search spaces
用于理解生物物理搜索空间的基于物理的人工智能方法
基本信息
- 批准号:RGPIN-2021-03470
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The drug discovery industry has been lacking innovation in recent years. This is mostly due to the exhaustion of known places to look--traditional search spaces. In addition, traditional chemistry methods show declining efficacy in finding novel search spaces. The overall goal of my interdisciplinary discovery grant research program is to bring together physical principles and data-driven artificial intelligence techniques to perform basic science research into the governing principles of multi-peptide search spaces and ways to traverse them. During my doctoral work in physics, I had the opportunity to employ skills in theory and computation to biophysical systems to understand and design short proteins for therapeutic and bioelectronic applications. During my postdoctoral appointment, I used statistics, artificial intelligence techniques and synthetic biology to develop an algorithm that identifies a set of chemical building blocks conferring on drugs the ability to permeate the outer membranes of Gram-negative bacteria. Going forward, I envision working at the interface of biophysics and artificial intelligence. I will go beyond my previous work by marrying the interpretability of computational physics-based approaches with the power of deep learning to access and understand new and unusual search spaces. By identifying important physics-based design rules, I will clarify the basic science and theory that underlies the development of novel therapeutic candidates. Deep learning has emerged as an important tool for identifying new drug candidates, but like many artificial intelligence techniques, it is hampered by its lack of interpretability, which makes it difficult to go from the identification to more general design rules. I will bring together the power of statistical physics with the power of deep learning to understand as well as identify new search spaces, which will help combat the serious problem of dwindling productivity of the drug industry in the future by providing a theoretical scaffold for later research. My specific research aims for the next five years are: - Aim 1: Studying the constraints necessary to construct a multi-peptide search space - Aim 2: Multi-scale model and iterative active learning to understand the basic science of antimicrobial peptide methods of action in a healthy state - Aim 3: Development of deep learning models through theoretical characterization of disulfide-rich peptides and their corresponding free energy surfaces This program will bring new techniques to the biophysical community in Canada and will provide new tools for the integration of data science with computational physics for scientists and companies alike. Highly qualified personnel working in my group will receive a thorough grounding in computational biophysics techniques, with a focus on molecular dynamics and Monte Carlo simulations, and in broadly-applicable data science techniques, with a focus on data-driven machine learning.
近年来,药物发现行业一直缺乏创新。这主要是由于已知的位置耗尽 - 传统的搜索空间。此外,传统的化学方法在寻找新的搜索空间方面有效性下降。我的跨学科发现赠款研究计划的总体目标是汇集物理原理和数据驱动的人工智能技术,以对多肽搜索空间的管理原理进行基础科学研究,并将其穿越它们。在物理学博士学位期间,我有机会在生物物理系统中采用理论和计算技能,以了解和设计用于治疗和生物电子应用的短蛋白。在我的博士后任命期间,我使用统计,人工智能技术和合成生物学来开发一种算法,该算法识别了一组化学基础块会议,会议上有关药物的能力,可以渗透到革兰氏阴性细菌的外部机制。展望未来,我设想在生物物理学和人工智能的界面上工作。我将通过将基于计算物理学的方法与深度学习的能力结合到访问和理解新的和不寻常的搜索空间的能力,将超越我以前的工作。通过确定重要的基于物理的设计规则,我将阐明基础科学和理论是新型治疗候选者发展的基础。深度学习已成为识别新药候选人的重要工具,但是像许多人工智能技术一样,它缺乏可解释性的阻碍,这使得很难从识别到更一般的设计规则。我将汇集统计物理学的力量,并具有深入学习的能力以及确定新的搜索空间,这将有助于解决未来药物行业生产率下降的严重问题,通过为以后的研究提供理论上的脚手架。我未来五年的具体研究目的是: - 目标1:研究构建多肽搜索空间所需的约束 - 目标2:多尺度模型和迭代积极学习,以了解健康状态中抗菌肽作用方法的基本科学的基础科学,目标3:AIM 3:通过对启用宠物及其启用的理论来开发深度学习模型,以使其对相应的宠物及其相应的特征来开发。加拿大的生物物理社区将为科学家和公司的计算物理学整合到将数据科学与计算物理的整合提供新的工具。在我的小组中工作的高素质人员将获得计算生物物理技术的彻底基础,重点是分子动力学和蒙特卡洛模拟,以及广泛适用的数据科学技术,重点是数据驱动的机器学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mansbach, Rachael其他文献
Mansbach, Rachael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mansbach, Rachael', 18)}}的其他基金
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
A physics-based approach to artificial intelligence for understanding of biophysical search spaces
用于理解生物物理搜索空间的基于物理的人工智能方法
- 批准号:
DGECR-2021-00444 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Launch Supplement
A physics-based approach to artificial intelligence for understanding of biophysical search spaces
用于理解生物物理搜索空间的基于物理的人工智能方法
- 批准号:
RGPIN-2021-03470 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于物理规律自适应表征的地震数据智能编码采集方法研究
- 批准号:42374222
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于粒子散射层析重构与嵌入物理约束神经网络的三维湍流场即时重建方法研究
- 批准号:52376160
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于变分推断和物理约束的机器学习综合方法校准南极冰架流变参数
- 批准号:42376230
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
A physics-based neural network approach for geophysical inversions
用于地球物理反演的基于物理的神经网络方法
- 批准号:
2309920 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
A placenta-based strategy for improved clinical prediction of fetal growth trajectory using automated image analysis of placental morphology and vascularity
基于胎盘的策略,使用胎盘形态和血管分布的自动图像分析来改进胎儿生长轨迹的临床预测
- 批准号:
10512601 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Toward physics-based seismic hazard assessments: A holistic approach to understanding the physics of induced earthquakes
基于物理的地震灾害评估:理解诱发地震物理的整体方法
- 批准号:
RGPIN-2019-06482 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Improving the Quality of Learning among Physics Students through a Synergistic Implementation of a Team-Based Learning Approach in a Hispanic-Serving Institution
通过在西班牙裔服务机构中协同实施基于团队的学习方法来提高物理学生的学习质量
- 批准号:
2216308 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Toward physics-based seismic hazard assessments: A holistic approach to understanding the physics of induced earthquakes
基于物理的地震灾害评估:理解诱发地震物理的整体方法
- 批准号:
RGPIN-2019-06482 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual