A physics-based neural network approach for geophysical inversions
用于地球物理反演的基于物理的神经网络方法
基本信息
- 批准号:2309920
- 负责人:
- 金额:$ 43.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geophysical imaging has contributed to much of our understanding of the Earth and its geologic, tectonic, and volcanic history. However, most geophysical imaging utilizes single data types rather than using multiple data types jointly, resulting in images that can be incompatible with other data. Such incompatibilities can lead to misleading or erroneous inferences about the Earth and the underlying geophysical processes. This project investigates a method for allowing seamless usage of both gravity and seismic data jointly by leveraging new artificial intelligence tools that have physics based constraints. The method promises to be easily and efficiently applied to many different geophysical imaging problems and therefore potentially improve our understanding of Earth’s tectonic history. In other contexts, the enhanced images may help determine how to best respond to natural hazards like earthquakes and volcanic eruptions. This work also helps connect the artificial intelligence and geophysics scientific communities, two communities that would benefit from more interactions with each other. In addition, the project supports graduate and undergraduate students, as well as outreach efforts in the Providence public schools that includes minority and low-income high school students.Joint inversions that robustly minimize the tradeoffs inherent in using different types of geophysical data are challenging to implement, in part due to the specialized expertise needed for each data type, the unique difficulties in setting up each type of inversion, and the quantity of data and simulations that must be analyzed as part of such studies. Machine learning has made great strides in addressing all three of the above challenges, but it still often remains computationally impractical to implement robustly and this is true of joint inversions of full-waveform seismic and gravity data. This work uses a new machine learning framework called physics informed neural networks (PINNs) to implement joint inversions of such data. The PINN framework leverages an understanding of the underlying physical model to reduce the cost of building a neural network to accurately approximate the wave propagation or Poisson equation governing the relevant data. One test target of the PINN-based joint inversion methodology is using field data from the Los Angeles Basin, where numerous prior in situ geological and structural field data can be used to test whether the joint inversion accomplishes the goal of improving the resolution of true geologic features. This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球物理成像为我们的大部分地质和火山历史造成了贡献,而不是共同使用多种数据类型,从而导致图像与数据不相容。通过利用新的基于人工工具的约束,可以使地球物理过程允许使用重力和地震数据其他环境,增强的图像可能会掌舵地震和火山爆发等自然危害的最佳反应随着普罗维登斯公立学校的宣传努力,由于每种数据类型数据和模拟的专业专家,在PA RT中,在使用不同类型的地球物理数据方面可将折衷的折衷降至最低,因此在PAR RT中有挑战性的折衷方案,而这些数据类型和模拟的模拟,随着每种数据类型和模拟的专业专家,随着每个数据类型的数据和低收入的折衷,作为此类研究的一部分,它通常在计算上仍然是不切实际的。 Pinn框架利用对基础物理模型的理解来降低构建神经网络的成本,以准确近似于洛杉矶流域的Wisson方程。现场数据可以联合倒置实现真正的地质特征的解决方案,以支持AI/ML Advancementes。此奖项反映了NSF'SF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Tsai其他文献
Victor Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Tsai', 18)}}的其他基金
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
- 批准号:
2146640 - 财政年份:2022
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
Collaborative Research: Improving the Interpretability of Tomographic Images Using Geologically Motivated Parametrizations
合作研究:利用地质驱动的参数化提高断层扫描图像的可解释性
- 批准号:
2011079 - 财政年份:2020
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
CAREER: Environmental Seismology and Geomechanics
职业:环境地震学和地质力学
- 批准号:
1939227 - 财政年份:2019
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
Theory and Models of Ice Sheet Surface Melting Instabilities in the Past and Future
过去和未来冰盖表面融化不稳定性的理论和模型
- 批准号:
1735715 - 财政年份:2017
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Towards the continuous monitoring of natural hazards from river floods and debris flows from seismic observations
通过地震观测持续监测河流洪水和泥石流造成的自然灾害
- 批准号:
1558479 - 财政年份:2016
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
CAREER: Environmental Seismology and Geomechanics
职业:环境地震学和地质力学
- 批准号:
1453263 - 财政年份:2015
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding free-surface scattering in an anisotropic medium with active and passive seismic methods at the Homestake Mine, South Dakota
合作研究:在南达科他州 Homestake 矿使用主动和被动地震方法了解各向异性介质中的自由表面散射
- 批准号:
1525229 - 财政年份:2015
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Extracting Seismic Core Phases with Array Interferometry
用阵列干涉法提取地震核心相位
- 批准号:
1316348 - 财政年份:2013
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
Understanding and Performing High-Resolution Surface-Wave Attenuation Measurements with USArray
了解并使用 USArray 进行高分辨率表面波衰减测量
- 批准号:
1252191 - 财政年份:2013
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
相似国自然基金
基于物理信息神经网络设计的复合式智能微风能量采集系统动力学分析
- 批准号:12372024
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于等离激元纳米粒子动态组装自振荡体系的物理神经网络的设计与构建
- 批准号:22372133
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于物理信息DeepONet神经网络及多孔介质孔隙尺度建模的多相流动力学研究
- 批准号:12372246
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
- 批准号:
23H00487 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311087 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311086 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Novel Machine Learning-Based Event Reconstruction and Analysis for the Water Cherenkov Experiment
基于机器学习的新型水切伦科夫实验事件重建和分析
- 批准号:
22KF0113 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows