Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations

常微分方程自适应误差控制解的数值软件

基本信息

  • 批准号:
    RGPIN-2017-05811
  • 负责人:
  • 金额:
    $ 3.79万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Computational simulation of complex systems is now a central tool in all areas of scientific research. The complexity of these systems requires that numerical software be employed to obtain accurate solutions as efficiently as possible. Over my research career, my interests have focused on the development of numerical software for boundary value ordinary differential equations (BVODEs), one-dimensional time-dependent partial differential equations (1D PDEs), and two-dimensional time-dependent partial differential equations (2D PDEs). Our software had been applied in the solution of, e.g., tumor cell growth models, heart simulations, and in financial models. My research over the next several years will continue to focus on numerical software for BVODEs and PDEs:BVODEs: Over the last 20 years I have developed error controlled numerical software packages based on special classes of Runge-Kutta (RK) methods; the most recent release of this package features options for global error control and defect control. (The defect is the amount by which the numerical solution fails to satisfy the BVODE.) Our new work will consider several improvements and extensions: (i) improved defect control schemes, (ii) new RK methods for stiff BVODEs, (iii) extensions to handle BVODEs with periodic boundary conditions, integral conditions, and/or delay and advance terms.1D PDEs: Over the last 12 years I have developed a family of B-spline collocation software packages that provide both spatial and temporal error control. The most recent member of this family (which uses Backward Differential methods for time stepping) provides a Fortran 95 interface and features more efficient error estimation and control schemes. Our new work will consider extensions to improve the capabilities of this software: (i) new error estimation and control schemes within the RK time-stepping version of this software, (ii) automatic collocation order and error control scheme selection, (iii) handling of larger PDE systems, improved performance on problems with challenging initial conditions, and treatment of problems where termination depends on a solution-dependent condition.2D PDEs: Our recent work has seen the development of prototype software based on extending the 1D algorithms to 2D. The current solver has a temporal error control capability but not a spatial error control capability. New work will focus on the development of spatial error estimation schemes and adaptive spatial error control.The value of this work will to be to provide more robust and efficient software packages, able to handle more general problems classes, thus contributing to the software tools available to computational scientists, allowing them to consider more complex scientific investigations.
复杂系统的计算模拟现在是所有科学研究领域的核心工具。这些系统的复杂性要求采用数值软件来尽可能有效地获得准确的解决方案。在我的研究生涯中,我的兴趣集中在开发边值常微分方程 (BVODE)、一维瞬态偏微分方程 (1D PDE) 和二维瞬态偏微分方程 (二维偏微分方程)。 我们的软件已应用于肿瘤细胞生长模型、心脏模拟和金融模型等解决方案中。在接下来的几年里,我的研究将继续集中在 BVODE 和 PDE 的数值软件上: BVODE:在过去 20 年里,我开发了基于特殊类别的 Runge-Kutta (RK) 方法的误差控制数值软件包;该软件包的最新版本具有全局错误控制和缺陷控制选项。 (缺陷是数值解无法满足 BVODE 的量。)我们的新工作将考虑多项改进和扩展:(i) 改进的缺陷控制方案,(ii) 用于刚性 BVODE 的新 RK 方法,(iii) 扩展处理具有周期性边界条件、积分条件和/或延迟和超前项的 BVODE。一维偏微分方程:在过去 12 年中,我开发了一系列 B 样条搭配软件包,可提供空间和时间误差控制。该系列的最新成员(使用向后微分方法进行时间步进)提供了 Fortran 95 接口,并具有更有效的误差估计和控制方案。我们的新工作将考虑扩展以提高该软件的功能:(i)该软件的 RK 时间步进版本中的新错误估计和控制方案,(ii)自动搭配顺序和错误控制方案选择,(iii)处理较大的偏微分方程系统,提高了具有挑战性的初始条件的问题的性能,以及处理终止取决于解决方案相关条件的问题。2D PDE:我们最近的工作已经看到基于将一维算法扩展到二维的原型软件的开发。当前的求解器具有时间误差控制能力,但不具有空间误差控制能力。新工作将侧重于空间误差估计方案和自适应空间误差控制的开发。这项工作的价值将是提供更强大和更高效的软件包,能够处理更一般的问题类别,从而为可用的软件工具做出贡献给计算科学家,使他们能够考虑更复杂的科学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muir, Paul其他文献

The real cost of sequencing: scaling computation to keep pace with data generation (vol 17, 53, 2016)
  • DOI:
    10.1186/s13059-016-0961-9
  • 发表时间:
    2016-04-28
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Muir, Paul;Li, Shantao;Gerstein, Mark
  • 通讯作者:
    Gerstein, Mark
Transcriptional activity and strain-specific history of mouse pseudogenes.
小鼠假基因的转录活性和品系特异性历史。
  • DOI:
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Sisu, Cristina;Muir, Paul;Frankish, Adam;Fiddes, Ian;Diekhans, Mark;Thybert, David;Odom, Duncan T;Flicek, Paul;Keane, Thomas M;Hubbard, Tim;Harrow, Jennifer;Gerstein, Mark
  • 通讯作者:
    Gerstein, Mark
Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions.
在细菌中编码人丝氨酸磷酸肽,用于全蛋白质组鉴定磷酸化依赖性相互作用。
  • DOI:
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    46.9
  • 作者:
    Barber, Karl W;Muir, Paul;Szeligowski, Richard V;Rogulina, Svetlana;Gerstein, Mark;Sampson, Jeffrey R;Isaacs, Farren J;Rinehart, Jesse
  • 通讯作者:
    Rinehart, Jesse
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation.
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐。
  • DOI:
  • 发表时间:
    2016-04-28
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Muir, Paul;Li, Shantao;Lou, Shaoke;Wang, Daifeng;Spakowicz, Daniel J;Salichos, Leonidas;Zhang, Jing;Weinstock, George M;Isaacs, Farren;Rozowsky, Joel;Gerstein, Mark
  • 通讯作者:
    Gerstein, Mark
Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs.
跨学科网络比较:毛球之间的配对。
  • DOI:
  • 发表时间:
    2016-03-23
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Yan, Koon;Wang, Daifeng;Sethi, Anurag;Muir, Paul;Kitchen, Robert;Cheng, Chao;Gerstein, Mark
  • 通讯作者:
    Gerstein, Mark

Muir, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muir, Paul', 18)}}的其他基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Software for Error Controlled Numerical Solution of Boundary Value Ordinary Differential Equations and Parabolic Partial Differential Equations
边值常微分方程和抛物型偏微分方程误差控制数值求解软件
  • 批准号:
    946-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

自适应软件系统中人在回路的搜索式性能保障研究
  • 批准号:
    62372084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向微服务架构软件的知识制导自适应机制研究
  • 批准号:
    62372351
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开源环境下的软件依赖结构腐化自适应治理技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间飞行器控制软件在轨自适应演化理论与方法研究
  • 批准号:
    U21B2015
  • 批准年份:
    2021
  • 资助金额:
    256 万元
  • 项目类别:
    联合基金项目
面向开放动态环境的软件自适应学习研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了