High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion

高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面

基本信息

  • 批准号:
    RGPIN-2019-05263
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our reliance on fossil fuels and impact on the climate is not sustainable and requires immediate action. My research program proposes to tackle these issues by catalyzing the CO2 reduction reaction on laser-textured surfaces for the production of useful fuels and to decrease CO2 emissions. The research proposal consists of four interconnected parts: i) We first propose to use laser surface texturing to control both micro- and nano-scale morphology and chemistry on the surface of copper and silver. Parameters such as laser wavelength, repetition rate, and pulse length, as well as machining environment will be optimized for the photocatalytic reduction of CO2 via visible light activated surface plasmons. Surface plasmons are collective oscillations of electrons that result in enhanced light absorption on nanostructures that can catalyze chemical reactions. ii) A suite of state-of-the-art techniques will be used to characterize the surface morphology, chemistry and surface plasmon resonance, and their evolution over time. Techniques such as Raman microscopy, x-ray photoelectron spectroscopy (XPS), fourier-transform infrared spectroscopy (FTIR), spectrophotometry, and electron and atomic force microscopy will paint a complete picture of the surface morphology and chemistry. iii) Once the surface texture is fully characterized, the reduction of CO2 via visible-light activated surface plasmons will be evaluated. We will concentrate on the electrocatalytic CO2 reduction reaction using laser nanotextured copper and silver as the catalysts. Copper and silver are efficient catalysts and have strong visible-region localized surface plasmon resonances that can lower reaction barriers and drive chemical reactions. Catalytic efficiency and selectivity will be assessed using an electrocatalytic cell coupled with a mass spectrometer, and liquid and gas chromatographs under artificial sun illumination. iv) While ultrafast lasers could texture large surfaces in a reasonable time, high speed manufacturing techniques such as stamping and cold rolling would be much more time and cost effective. Stamping and cold rolling will therefore be used to transfer laser micro and nanoscale textures from die to parts. Catalytic properties, die life-time, and resilience of micro and nanoscale features will be investigated. The combination of laser micromachining and high-speed transfer processes for CO2 conversion has never been done, and promises to contribute to mitigate global warming and the dangerous effects of climate change while at the same time providing a green source of fuels. In addition to new scientific discoveries, industrial applications, and environmental benefits, the proposed research program will provide training to students on state-of-the art equipment, methodologies, and problem-solving skills in the areas of laser surface texturing, surface characterization, high speed manufacturing, and solar plasmon-enhanced photochemistry.
我们对化石燃料的依赖及其对气候的影响是不可持续的,需要立即采取行动。我的研究计划建议通过催化激光纹理表面上的二氧化碳还原反应来生产有用燃料并减少二氧化碳排放来解决这些问题。该研究提案由四个相互关联的部分组成:i)我们首先提出使用激光表面纹理来控制铜和银表面的微米和纳米级形态和化学。激光波长、重复率和脉冲长度等参数以及加工环境将被优化,以通过可见光激活表面等离子体激元来光催化还原二氧化碳。表面等离子体激元是电子的集体振荡,可增强纳米结构的光吸收,从而催化化学反应。 ii)将使用一套最先进的技术来表征表面形态、化学和表面等离子体共振及其随时间的演变。拉曼显微镜、X射线光电子能谱 (XPS)、傅里叶变换红外光谱 (FTIR)、分光光度法以及电子和原子力显微镜等技术将描绘出表面形态和化学的完整图像。 iii) 一旦表面纹理得到充分表征,将评估通过可见光激活表面等离子体激元减少二氧化碳的情况。我们将专注于使用激光纳米纹理铜和银作为催化剂的电催化二氧化碳还原反应。铜和银是有效的催化剂,具有很强的可见光区域局部表面等离子体共振,可以降低反应势垒并驱动化学反应。将使用电催化池与质谱仪以及人工太阳照明下的液体和气相色谱仪相结合来评估催化效率和选择性。 iv) 虽然超快激光器可以在合理的时间内对大表面进行纹理化,但冲压和冷轧等高速制造技术将更加节省时间和成本。因此,冲压和冷轧将用于将激光微米和纳米级纹理从模具转移到零件。将研究催化性能、模具寿命以及微米和纳米级特征的弹性。激光微加工和高速传输工艺相结合用于二氧化碳转化是前所未有的,有望有助于缓解全球变暖和气候变化的危险影响,同时提供绿色燃料来源。除了新的科学发现、工业应用和环境效益之外,拟议的研究计划还将为学生提供有关激光表面纹理、表面表征、高速制造和太阳能等离子体增强光化学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weck, Arnaud其他文献

Passivation of Plasmonic Colors on Bulk Silver by Atomic Layer Deposition of Aluminum Oxide
  • DOI:
    10.1021/acs.langmuir.8b00210
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Guay, Jean-Michel;Killaire, Graham;Weck, Arnaud
  • 通讯作者:
    Weck, Arnaud
Laser-written colours on silver: optical effect of alumina coating
  • DOI:
    10.1515/nanoph-2018-0202
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Guay, Jean-Michel;Lesina, Antonino Cala;Weck, Arnaud
  • 通讯作者:
    Weck, Arnaud
Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium
  • DOI:
    10.1016/j.surfcoat.2019.124931
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Exir, Hourieh;Weck, Arnaud
  • 通讯作者:
    Weck, Arnaud
Topography Tuning for Plasmonic Color Enhancement via Picosecond Laser Bursts
  • DOI:
    10.1002/adom.201800189
  • 发表时间:
    2018-09-04
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Guay, Jean-Michel;Lesina, Antonino Cala;Weck, Arnaud
  • 通讯作者:
    Weck, Arnaud
Influence of oxidative nanopatterning and anodization on the fatigue resistance of commercially pure titanium and Ti-6Al-4V

Weck, Arnaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weck, Arnaud', 18)}}的其他基金

High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Micromachining of optical features and their transfer via stamping on precious metals
光学特征的微加工及其通过贵金属冲压的转移
  • 批准号:
    543485-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Reducing ultrafast laser induced damage in commercial materials during machining of site-specific**targets
减少特定地点**目标加工过程中超快激光对商业材料造成的损伤
  • 批准号:
    522333-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Origins of fracture and design of damage resistant materials
断裂起源和抗损伤材料的设计
  • 批准号:
    RGPIN-2014-03612
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Determination of true stress-strain data behond the necking point and fracture loci of vintage steel pipes, using digital image correlation and finite element analysis
使用数字图像相关和有限元分析确定老式钢管颈缩点和断裂位点后面的真实应力应变数据
  • 批准号:
    490975-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Origins of fracture and design of damage resistant materials
断裂起源和抗损伤材料的设计
  • 批准号:
    RGPIN-2014-03612
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Origins of fracture and design of damage resistant materials
断裂起源和抗损伤材料的设计
  • 批准号:
    RGPIN-2014-03612
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Determination of true stress-strain data using spherical indentation techniques
使用球形压痕技术确定真实应力应变数据
  • 批准号:
    507122-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program

相似国自然基金

数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字技术驱动制造业低碳转型的失效机制与破解路径:基于数字技术承接力的视角
  • 批准号:
    72304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国西部城市不同所有制制造业企业的全球主动嵌入:全球网络、行业差异和安全评估
  • 批准号:
    42371198
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
复合系统视阈下制造业绿色转型的演化机理、绩效评价及调控策略研究
  • 批准号:
    72373138
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of HIV glycoproteins as vaccine candidates
作为候选疫苗的 HIV 糖蛋白的优化
  • 批准号:
    9065281
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
Optimization of HIV glycoproteins as vaccine candidates
作为候选疫苗的 HIV 糖蛋白的优化
  • 批准号:
    9506694
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了