Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
基本信息
- 批准号:RGPIN-2019-07286
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important dynamical systems in physical sciences and engineering possess important geometric structures, such as invariant quantities. Such quantities must stay constant as the state of the system evolves and they are essential for understanding the long-term behaviour of these systems. In order to study these complex dynamical systems, numerical methods are often used to approximate the state of the system on computer simulations over long periods of time. Unfortunately, traditional numerical methods are not conservative, as they do not preserve invariants which can lead to large deviations in their approximations. While general conservative methods exist, they can exhibit instabilities over long-term simulations or have difficulties with implementation for large dynamical systems with multiple invariants. A new class of conservative methods known as the Discrete Multiplier Method (DMM) was recently developed which can avoid these difficulties. This research program seeks to explore two parallel objectives: 1) Theoretical developments of DMM, and 2) Applications of DMM. In the first objective, extensions to the theory of DMM will be investigated. Specifically, we will develop new conservative methods for time-dependent partial differential equations. In particular, wave and dispersive phenomena are modelled by such equations in both space and time and they interact in a nontrivial way so that their invariants are preserved. By applying traditional numerical methods in spatial approximation and DMM in temporal approximation, we will devise new conservative methods to study these time-dependent problems. Moreover, we will study the connections of DMM with existing general conservative methods and compare their stability properties. In the second objective, we will explore novel applications of DMM in physical sciences and engineering. Specifically, we intend to develop extensions of DMM to simulate flows on manifolds. Such flows are important in many areas as they appear in classical mechanics, control theory, image processing, neural networks and optimizations. Using the DMM approach, new conservative methods will be developed to study this large class of important problems. In addition, we will apply DMM to long-term simulations in molecular dynamics. While specialized numerical methods have been developed for molecular simulations, they do not preserve the energy, which is an important invariant of these systems. Instead, we will devise new conservative methods for molecular dynamics and compare the statistics of different molecular models. This work will lead to a new class of numerical methods with favourable long-term properties for computational science and will have a direct impact on a variety of important problems from physical sciences and engineering.
物理科学和工程学中的许多重要动力系统都具有重要的几何结构,例如不变量。随着系统状态的发展,这些量必须保持恒定,它们对于理解这些系统的长期行为至关重要。 为了研究这些复杂的动力系统,通常使用数值方法来在长时间的计算机模拟中近似系统的状态。不幸的是,传统的数值方法并不保守,因为它们不保留不变量,这可能导致其近似值出现较大偏差。虽然存在一般的保守方法,但它们在长期模拟中可能表现出不稳定性,或者难以实现具有多个不变量的大型动态系统。 最近开发了一种新的保守方法,称为离散乘数方法(DMM),可以避免这些困难。该研究计划旨在探索两个并行目标:1)DMM 的理论发展,2)DMM 的应用。在第一个目标中,将研究 DMM 理论的扩展。具体来说,我们将为瞬态偏微分方程开发新的保守方法。特别是,波和色散现象通过空间和时间上的此类方程进行建模,并且它们以非平凡的方式相互作用,从而保留了它们的不变量。通过在空间近似中应用传统的数值方法,在时间近似中应用DMM,我们将设计新的保守方法来研究这些与时间相关的问题。此外,我们将研究 DMM 与现有通用保守方法的联系,并比较它们的稳定性。在第二个目标中,我们将探索 DMM 在物理科学和工程中的新颖应用。具体来说,我们打算开发 DMM 的扩展来模拟流形上的流动。这种流在许多领域都很重要,因为它们出现在经典力学、控制理论、图像处理、神经网络和优化中。使用 DMM 方法,将开发新的保守方法来研究这一大类重要问题。此外,我们还将把DMM应用于分子动力学的长期模拟。虽然已经开发出了用于分子模拟的专门数值方法,但它们并没有保留能量,而能量是这些系统的一个重要不变量。相反,我们将为分子动力学设计新的保守方法,并比较不同分子模型的统计数据。这项工作将带来一类新的数值方法,对计算科学具有有利的长期特性,并将对物理科学和工程学的各种重要问题产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wan, Andy其他文献
Wan, Andy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wan, Andy', 18)}}的其他基金
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
DGECR-2019-00467 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Launch Supplement
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
- 批准号:52377095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
酶活动态可调的磁响应纳米杂化尿酸酶的构建及其体内抗痛风性能研究
- 批准号:32371456
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动态坐姿对人椅交互作用的干预机理研究
- 批准号:52305324
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字孪生驱动的车联网脆弱性动态量化评估研究
- 批准号:62362053
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
DGECR-2019-00467 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Launch Supplement
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
- 批准号:
RGPIN-2019-07286 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
- 批准号:
24360045 - 财政年份:2012
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)