Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
基本信息
- 批准号:RGPIN-2018-04443
- 负责人:
- 金额:$ 8.3万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research program is centred on fundamental problems in differential geometry and nonlinear PDE: the isometric embedding problem, the isoperimetric type inequalities on general manifolds, and regularity of solutions to nonlinear geometric partial differential equations. The first topic is isometric embedding problem for compact surfaces to three dimensional Riemannian manifold with horizons. When the ambient space is Euclidean space, it is the classical Weyl problem. It is of importance in geometry to consider general ambient space, this also is related to the notions of quasi local masses in general relativity. The most interesting case is that when the ambient space is a anti de Sitter-Schwarzchilds space. The second topic concerns various global geometric quantities on manifolds, like volume, surface area, quermassintegrals etc. We would like to establish optimal isoperimetric type inequalities for these geometric quantities. Our approach will be based on nonlinear partial differential equations of parabolic type. For each pair of geometric quantities, we would like to design a curvature flow such that: along the flow, one quantity is preserved and another is monotone. The key is to prove the longtime existence and convergence of the flow. The last topic addresses some longstanding regularity problems of curvature type equations. Pogorelov type counter-examples indicate that interior regularity fails for Monge-Amp\`ere equation when dimension is larger or equal to three. One longstanding open problem is that, if interior estimate holds for scalar curvature equation and $\sigma_2$ Hessian equation. These geometric equations are of fundamental importance, for example, scalar curvature equation naturally arising from the isometric embedding problems. A breakthrough will have great impact in geometric analysis. A common thread linking our program is the analysis of the geometric fully nonlinear equations. These equations are the main subjects of the research program. Besides the regularity and existence of solutions of these equations (which are still important subjects of the study), there emerge some new directions of research from the proposed problems. One main challenge is for the isometric embedding problem discussed is the existence of homotopic paths, we propose a novel approach using geometric flows in combination with elliptic method. The flow approach will also be devised to establish isoperimetric type inequalities: explore the variational properties of the associated functionals to design a flow with appropriate monotonicity properties. For the regularity problems of solutions to geometric nonlinear PDE, we propose new ideas to deal with the issue. Our objective is to develop various analytic tools for geometric nonlinear partial differential equations, investigate structures of solutions and derive geometric consequences.
拟议的研究计划以微分几何和非线性偏微分方程的基本问题为中心:等距嵌入问题、一般流形上的等周型不等式以及非线性几何偏微分方程解的正则性。 第一个主题是紧致曲面到具有视界的三维黎曼流形的等距嵌入问题。当环境空间是欧几里得空间时,就是经典的Weyl问题。在几何学中考虑一般环境空间非常重要,这也与广义相对论中的准局部质量的概念有关。最有趣的情况是当周围空间是反德西特-史瓦西空间时。 第二个主题涉及流形上的各种全局几何量,例如体积、表面积、质量积分等。我们希望为这些几何量建立最佳等周型不等式。我们的方法将基于抛物型非线性偏微分方程。对于每一对几何量,我们希望设计一个曲率流,使得:沿着流,一个量被保留,另一个量是单调的。关键是要证明流的长期存在性和收敛性。最后一个主题解决了曲率类型方程的一些长期存在的正则性问题。 Pogorelov 型反例表明,当维度大于或等于 3 时,Monge-Amp\'ere 方程的内部正则性失效。一个长期悬而未决的问题是,内部估计是否适用于标量曲率方程和 $\sigma_2$ Hessian 方程。这些几何方程具有根本重要性,例如,等距嵌入问题自然产生的标量曲率方程。一个突破将对几何分析产生巨大影响。连接我们程序的一个共同线索是几何完全非线性方程的分析。这些方程是该研究计划的主要主题。除了这些方程的规律性和解的存在性(这仍然是研究的重要课题)之外,所提出的问题还出现了一些新的研究方向。对于所讨论的等距嵌入问题的一个主要挑战是同伦路径的存在,我们提出了一种使用几何流与椭圆方法相结合的新方法。还将设计流方法来建立等周类型不等式:探索相关泛函的变分属性,以设计具有适当单调性属性的流。针对几何非线性偏微分方程解的正则性问题,我们提出了处理该问题的新思路。 我们的目标是开发用于几何非线性偏微分方程的各种分析工具,研究解的结构并导出几何结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guan, Pengfei其他文献
A general rule for transition metals doping on magnetic properties of Fe-based metallic glasses
- DOI:
10.1016/j.jallcom.2019.153062 - 发表时间:
2020-04-05 - 期刊:
- 影响因子:6.2
- 作者:
Chen, Hui;Zhou, Shaoxiong;Guan, Pengfei - 通讯作者:
Guan, Pengfei
Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses
- DOI:
10.1103/physrevlett.104.205701 - 发表时间:
2010-05-21 - 期刊:
- 影响因子:8.6
- 作者:
Guan, Pengfei;Chen, Mingwei;Egami, Takeshi - 通讯作者:
Egami, Takeshi
In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.
原位原子尺度观测超出弹性极限的连续可逆晶格变形
- DOI:
10.1038/ncomms3413 - 发表时间:
2013 - 期刊:
- 影响因子:16.6
- 作者:
Wang, Lihua;Liu, Pan;Guan, Pengfei;Yang, Mingjie;Sun, Jialin;Cheng, Yongqiang;Hirata, Akihiko;Zhang, Ze;Ma, Evan;Chen, Mingwei;Han, Xiaodong - 通讯作者:
Han, Xiaodong
High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature.
二维SiTe在高温下具有高n型和p型热电性能
- DOI:
10.1039/c8ra02270d - 发表时间:
2018-06-08 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Qian;Quhe, Ruge;Guan, Zixuan;Wu, Liyuan;Bi, Jingyun;Guan, Pengfei;Lei, Ming;Lu, Pengfei - 通讯作者:
Lu, Pengfei
Injectable Intrinsic Photothermal Hydrogel Bioadhesive with On-Demand Removability for Wound Closure and MRSA-Infected Wound Healing
- DOI:
10.1002/adhm.202203306 - 发表时间:
2023-02-05 - 期刊:
- 影响因子:10
- 作者:
Kang, Xinchang;Guan, Pengfei;Zhou, Lei - 通讯作者:
Zhou, Lei
Guan, Pengfei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guan, Pengfei', 18)}}的其他基金
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2020
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2019
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2018
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2017
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2016
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2015
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
流动电极设计与嵌入式集流体构筑对半固态液流电池性能影响机理研究
- 批准号:22378269
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
- 批准号:62372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动力学嵌入问题与sofic平均维数
- 批准号:12371190
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
热力学表述的二维异质界面分子插层嵌入和微结构演化的分子模拟研究
- 批准号:22378185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向药物-靶蛋白互作预测的多尺度分子三维空间嵌入结构学习方法研究
- 批准号:62302075
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Language Embeddings for Proof Engineering
用于证明工程的语言嵌入
- 批准号:
EP/Y000242/1 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Research Grant
REU Site: Beyond Language: Training to Create and Share Vector Embeddings across Applications
REU 网站:超越语言:跨应用程序创建和共享向量嵌入的培训
- 批准号:
2244259 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
Learning explanable embeddings for topics and its applications
学习主题及其应用的可解释嵌入
- 批准号:
23K11231 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
- 批准号:
2238976 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
- 批准号:
2348683 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant