Geometric nonlinear partial differential equations
几何非线性偏微分方程
基本信息
- 批准号:46732-2010
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential geometry and differential equations are involved in many practical problems and often highly theoretical problems in Physics and Engineering and other areas. Most of these problems are guided by nonlinear differential equations. For example, the string theory in theoretical physics, where differential geometry and differential equations play important roles. Various ideas of analysis are used in the process of finding solutions of differential equations with certain geometric properties in general and in particular those that are nonlinear. The main thrusts in differential geometry are the search for ``optimal" geometric structures, such as diffeomorphisms, metrics, etc., and the study of the geometric and topological implications of their existence. These ``extremal" geometric objects can be viewed as solutions to natural nonlinear partial differential equations, and they encode rich information linking geometry, topology and analysis. Curvature tensors yield important examples, e.g. Ricci tensor and Weingarten map. The study of these curvature tensors in general carried out through systems of parabolic and elliptic nonlinear equations. The examples including the Monge-Amp\`ere equations, Gauss curvature flow, and the Ricci flow. We continue to study the fully nonlinear partial differential equations related to problems in differential geometry.
A common thread linking our program is the analysis of the geometric fully nonlinear equations and their relationship with geometric quantities . The fundamental existence and regularity questions in the category of analysis should be adapted to cope with the emphasis on {\it geometric} solutions, which are often forced upon us by the geometric nature of the problems like the monotonicity of specified geometric functionals. Our objective is to develop various analytic tools to establish a priori estimates for these equations, explore the structures of geometric solutions, and derive geometric consequences.
差异几何形状和微分方程参与了许多实际问题,并且在物理和工程以及其他领域中通常是高度理论问题。这些问题大多数都以非线性微分方程为指导。例如,理论物理学中的弦理论,其中差分几何和微分方程起着重要作用。在寻找具有某些几何特性的微分方程解决方案的解决方案的过程中,尤其是非线性的分析思想。差异几何形状中的主要推力是寻找``最佳''几何结构,例如差异性,指标等,以及对其存在的几何和拓扑含义的研究。这些``极端''几何对象可被视为自然非线性偏微分方程的解决方案,它们编码了链接几何形状,拓扑和分析的丰富信息。曲率张量产生重要的例子,例如Ricci Tensor和Weingarten地图。一般来说,对这些曲率张量的研究通过抛物线和椭圆形非线性方程式进行。包括Monge-Amp \'eRE方程,高斯曲率流和Ricci流中的示例。我们继续研究与差异几何学问题有关的完全非线性偏微分方程。
连接我们程序的一个共同线程是对几何形状方程的分析及其与几何数量的关系。分析类别中的基本存在和规律性问题应适应对{\ it几何}解决方案的强调,这些解决方案通常由于指定几何函数的单调性的几何性质而被迫迫使我们。我们的目标是开发各种分析工具,以建立这些方程式的先验估计,探索几何解决方案的结构,并得出几何后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guan, Pengfei其他文献
A general rule for transition metals doping on magnetic properties of Fe-based metallic glasses
- DOI:
10.1016/j.jallcom.2019.153062 - 发表时间:
2020-04-05 - 期刊:
- 影响因子:6.2
- 作者:
Chen, Hui;Zhou, Shaoxiong;Guan, Pengfei - 通讯作者:
Guan, Pengfei
Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses
- DOI:
10.1103/physrevlett.104.205701 - 发表时间:
2010-05-21 - 期刊:
- 影响因子:8.6
- 作者:
Guan, Pengfei;Chen, Mingwei;Egami, Takeshi - 通讯作者:
Egami, Takeshi
Injectable Intrinsic Photothermal Hydrogel Bioadhesive with On-Demand Removability for Wound Closure and MRSA-Infected Wound Healing
- DOI:
10.1002/adhm.202203306 - 发表时间:
2023-02-05 - 期刊:
- 影响因子:10
- 作者:
Kang, Xinchang;Guan, Pengfei;Zhou, Lei - 通讯作者:
Zhou, Lei
In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.
原位原子尺度观测超出弹性极限的连续可逆晶格变形
- DOI:
10.1038/ncomms3413 - 发表时间:
2013 - 期刊:
- 影响因子:16.6
- 作者:
Wang, Lihua;Liu, Pan;Guan, Pengfei;Yang, Mingjie;Sun, Jialin;Cheng, Yongqiang;Hirata, Akihiko;Zhang, Ze;Ma, Evan;Chen, Mingwei;Han, Xiaodong - 通讯作者:
Han, Xiaodong
High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature.
二维SiTe在高温下具有高n型和p型热电性能
- DOI:
10.1039/c8ra02270d - 发表时间:
2018-06-08 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Qian;Quhe, Ruge;Guan, Zixuan;Wu, Liyuan;Bi, Jingyun;Guan, Pengfei;Lei, Ming;Lu, Pengfei - 通讯作者:
Lu, Pengfei
Guan, Pengfei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guan, Pengfei', 18)}}的其他基金
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
部分相干光的二阶及三阶非线性调控研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具非局部分数阶耗散的非线性波动方程的整体适定性和吸引子
- 批准号:12171438
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
基于部分状态反馈的复杂非线性不确定系统有限时间控制
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
Banach空间(部分)耗散非线性耦合系统的不变流形及有限维约化
- 批准号:11971317
- 批准年份:2019
- 资助金额:50 万元
- 项目类别:面上项目
非线性部分欠定时序方程组求解及其在飞行器定位中的应用
- 批准号:61703408
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual