New horizons in operator algebras: finite-dimensional approximations and quantized function theory

算子代数的新视野:有限维近似和量化函数理论

基本信息

  • 批准号:
    RGPIN-2022-03600
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research program aims to discover new structure in the theory of operator algebras. Classically, these algebras came into being as a mathematical counterpart to the theory of quantum physics. The link between operator algebras and natural sciences continues to grow today, as witnessed in quantum information theory or quantum field theory for instance. Simply put, the connection between operator algebras and quantum physics is realized by symmetric operators between Euclidean spaces. Much of the sought-after structure of these operators can be unlocked upon considering the operator algebras (or C*-algebras) that they generate. What sets this research proposal apart from such classical investigations is that it is concerned with algebras of operators that lack the usual symmetry of quantum mechanical observables. In some applications the relevant operators happen to be a perturbation of a usual observable, so the resulting operator algebras are not susceptible to the tools designed to study C*-algebras. To elucidate the structure of these non self-adjoint operator algebras, I will employ innovative techniques in quantized function theory to implement finite-dimensional approximations. If we consider matrices to be the most basic objects, we may subsequently try to use them as building blocks for more complex algebras. This is the basic idea of a finite-dimensional approximation, a paradigm that has led to recent spectacular developments in the classification theory of C*-algebras. Some of the crucial insight involved in these advances was brought to light via a powerful functional analogy: one can view non-commutative algebras as consisting of functions, and exploit the resulting intuition coming from classical topology or dynamical systems theory. In spite of the unquestionable success of such a "quantized" theory of functions for C*-algebras, the corresponding non self-adjoint version has received measurably less attention. It is the purpose of this proposal to fill this gap. I will develop new tools in quantized function theory, a vibrant and rapidly evolving field with applications to systems and control theory, free probability and real algebraic geometry. The passage from C*-algebras to non self-adjoint ones should be mirrored by the set of non-commutative continuous functions collapsing to those that are in fact holomorphic. Classical intuition then suggests that this should result in a significant loss of flexibility and in a wealth of new rigidity phenomena. Towards achieving the above objectives, I have formulated an extensive scaffolding of concrete steps. The resulting numerous sub-problems of varied difficulties form the basis of my training plan for a diverse group of highly qualified personnel that I will recruit at all levels. Collaborations and interactions within my research group will be encouraged, and will foster an inclusive training environment.
拟议的研究计划旨在发现算子代数理论中的新结构。传统上,这些代数是作为量子物理理论的数学对应物而出现的。如今,算子代数与自然科学之间的联系继续增长,例如量子信息论或量子场论。简单地说,算子代数与量子物理的联系是通过欧几里德空间之间的对称算子实现的。通过考虑它们生成的算子代数(或 C* 代数),可以解锁这些算子的许多广受欢迎的结构。这项研究提案与此类经典研究的不同之处在于,它关注的是缺乏量子力学可观测量通常对称性的算子代数。 在某些应用中,相关算子恰好是通常可观测值的扰动,因此所得算子代数不易受到设计用于研究 C* 代数的工具的影响。为了阐明这些非自伴算子代数的结构,我将采用量化函数理论中的创新技术来实现有限维近似。如果我们认为矩阵是最基本的对象,我们随后可能会尝试使用它们作为更复杂代数的构建块。这是有限维近似的基本思想,这种范式导致了 C* 代数分类理论最近的惊人发展。这些进步中涉及的一些关键见解是通过强大的函数类比揭示的:人们可以将非交换代数视为由函数组成,并利用来自经典拓扑或动力系统理论的直觉。尽管这种 C* 代数函数的“量化”理论取得了毫无疑问的成功,但相应的非自伴版本受到的关注却明显较少。本提案的目的就是填补这一空白。我将在量化函数理论中开发新工具,这是一个充满活力且快速发展的领域,应用于系统和控制理论、自由概率和实代数几何。从 C* 代数到非自共代数的过渡应该通过一组非交换连续函数折叠为实际上全纯的函数来反映。经典直觉表明,这将导致灵活性的显着丧失和大量新的僵化现象。为了实现上述目标,我制定了广泛的具体步骤。由此产生的众多不同难度的子问题构成了我将在各个级别招募的多元化高素质人才的培训计划的基础。我的研究小组内的合作和互动将受到鼓励,并将营造一个包容性的培训环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clouatre, Raphael其他文献

Clouatre, Raphael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clouatre, Raphael', 18)}}的其他基金

Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

“圈域”视野下的农村人民公社空间生产机制及其遗产价值研究——以河南省为例
  • 批准号:
    52308028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
视野受限的无人车行为决策方法研究
  • 批准号:
    62373284
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于选择性平面照明与频谱编码的大视野实时高分辨光纤束内窥成像研究
  • 批准号:
    62375280
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
产权重构视野下历史街区城市活力时空分异及形成机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耗散理论视野下街道空间活力形成机理实证研究——以海南湿热型旅游城市为例
  • 批准号:
    52268011
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
  • 批准号:
    2345607
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
New Horizons in Quinonedimethide Chemistry
醌二甲基化学的新视野
  • 批准号:
    DP240100555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Projects
AMPQuest - Journeying to new horizons in treating drug-resistant infections.
AMPQuest - 迈向治疗耐药感染的新视野。
  • 批准号:
    BB/Y514019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
  • 批准号:
    2418125
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了