Operator algebras of multipliers on reproducing kernel Hilbert spaces

再生核希尔伯特空间上的乘子算子代数

基本信息

  • 批准号:
    RGPIN-2016-05914
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The aim of my research program is to classify mathematical objects called operators. An operator is a transformation having a very rigid property known as linearity. Plotting the graph of a linear transformation acting on the Cartesian plane results in another plane in three dimensional space, for instance. This simple property of operators makes them amenable to analysis using mathematical tools. On the other hand, operators can be fruitfully used to describe many important phenomena occurring in natural science and engineering. Indeed, they are the basic objects appearing in quantum mechanics for example. Consequently, it is desirable to develop a solid mathematical theory for them. The anticipated classification resulting from my research would yield a convenient method for understanding operators, and could benefit both mathematicians and scientists in other fields.***Building a general theory is a complex problem since operators exhibit tremendous variety. Fortunately, many common operators that are frequently encountered in applications display some level of additional structure, and basing a classification on this given extra structure becomes a more manageable endeavour. The idea to achieve it is to identify a certain concrete model subclass of representatives. If done appropriately, the study of the general operators can be reduced (in some precise sense) to the study of these more concrete models and broad conclusions can then be extracted thereof. The concrete operators are usually chosen to act on spaces consisting of functions, making them very familiar to mathematicians. In fact, this idea is not new and has been exploited to great effect for many years now in the case where the focus is on a single operator. To describe interactions between two natural systems however, one needs to capture the behaviour of a pair of operators. The state of the art knowledge on models for such pairs is still rather rudimentary, and improving it is the principal objective I will pursue.***There are two main features in the program described above, and they will be undertaken jointly with my graduate students. First, the collection of concrete representatives needs to be chosen to be rich enough in order for it to model a significant and practical family of general operators. This richness will be detected by grouping the two operators of interest together will all the ones that are naturally related to them into an operator algebra, and performing an analysis of the resulting object. The second step is then to explore and examine in great detail the concrete representatives that have been identified. The precise nature of our examination will depend on the information that is required, but a typical example could involve the so-called spectrum of the pair of operators which corresponds to the measurements of an observable quantity that can be made in a laboratory.**
我的研究计划的目的是对称为运算符的数学对象进行分类。运算符是一种具有非常严格的属性(称为线性)的变换。例如,绘制作用在笛卡尔平面上的线性变换的图形会产生三维空间中的另一个平面。运算符的这种简单属性使它们适合使用数学工具进行分析。另一方面,算子可以有效地用来描述自然科学和工程中发生的许多重要现象。事实上,它们是量子力学中出现的基本物体。因此,需要为它们开发可靠的数学理论。我的研究产生的预期分类将为理解运算符提供一种方便的方法,并且可以使其他领域的数学家和科学家受益。***建立一般理论是一个复杂的问题,因为运算符表现出巨大的多样性。幸运的是,应用程序中经常遇到的许多常见运算符都显示了某种级别的附加结构,并且基于此给定的附加结构进行分类变得更易于管理。实现它的想法是确定代表的某个具体模型子类。如果处理得当,对一般算子的研究可以(在某种精确意义上)简化为对这些更具体模型的研究,然后可以从中提取广泛的结论。通常选择具体运算符来作用于由函数组成的空间,这使得数学家对它们非常熟悉。事实上,这个想法并不新鲜,并且在关注单个操作员的情况下已经被利用多年并取得了巨大的效果。然而,为了描述两个自然系统之间的相互作用,需要捕获一对操作员的行为。关于此类对的模型的最新知识仍然相当初级,改进它是我追求的主要目标。***上述项目有两个主要特点,它们将与我的研究生共同开展学生。首先,需要选择足够丰富的具体代表集合,以便能够对一个重要且实用的一般算子族进行建模。通过将两个感兴趣的运算符分组在一起,将所有与它们自然相关的运算符组合成一个运算符代数,并对结果对象进行分析,可以检测到这种丰富性。第二步是详细探索和审查已确定的具体代表。我们检查的精确性质将取决于所需的信息,但一个典型的例子可能涉及所谓的一对算子的频谱,它对应于可以在实验室中进行的可观察量的测量。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clouatre, Raphael其他文献

Clouatre, Raphael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clouatre, Raphael', 18)}}的其他基金

New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丛代数的范畴化与散射图方法
  • 批准号:
    12301048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3-李代数的上同调理论及其应用
  • 批准号:
    12301034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
一类正规整表代数的研究
  • 批准号:
    12301021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了