Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems

解决现代电路布局问题的先进大规模优化方法

基本信息

  • 批准号:
    RGPIN-2016-03833
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The design of many fundamental manufacturing and circuit layout problems can be modeled as linear or nonlinear combinatorial optimization problems. All of these problems are NP-hard. Very tight performance specifications for these problems (i.e., minimum wirelength, minimum area, minimum power and congestion) demand near optimal designs subject to many millions to billions of variables and constraints. Over the last six years, we have developed efficient optimization techniques that can be used to solve these problems using interior point and semidefinite programming approaches that can be solved in polynomial time.There are two main objectives in developing this research program and direction. First, a major objective of the proposed research program is aimed at "integration" of large-scale interior point methodologies used in linear, quadratic, convex, second-order cone programming to form the basis of generating relative placements and routings with "little or no overlap" while reducing wirelength and area. A second major objective is to develop promising approaches to "allow optimizers to scale"; that is, predictable fast running times will be achieved as problem size increases beyond a million constraints and variables for these present day layout problems. To achieve these objectives during the next five years, two novel approaches to solve large optimization problems containing more than a million variables and constraints will be developed. First, recent advances in "matrix free" interior-point approaches will allow the scope and size of solved problems to be in the order of millions or billions of variables and constraints. Second, we plan to accelerate interior-point algorithms using new warmstarting techniques to speed up the running time of for these very large problems. Initial focus will be on the generation of Very Large Scale Integrated (VLSI) circuit layout for "standard cell" and "mixed cell" technologies that still form a major part of integrated circuit design. Second, the exploration of analytic-based models and large-scale nonlinear interior-point solvers will be developed to solve emerging large placement problems arising in Field Programmable Gate Array (FPGAs) layout. Another equally important "objective" of this research is to reduce the need for search techniques such as simulated annealing, genetic algorithms and Tabu search to further reduce wirelength and area as well as timing, delay, power and congestion problems. In this overall research program, we plan to minimally use search techniques to refine feasible starting solutions that are generated by the powerful interior point or semidefinite programming solvers. The aim is to use mathematical programming models of placement, floorplanning and global routing and to solve them as efficiently as possible to reduce or ideally eliminate the need for search techniques.
许多基本制造和电路布局问题的设计可以建模为线性或非线性组合优化问题。所有这些问题都是 NP 困难的。这些问题的非常严格的性能规范(即最小线长、最小面积、最小功率和拥塞)需要接近最佳设计,但受数百万到数十亿的变量和约束的影响。在过去的六年中,我们开发了有效的优化技术,可用于使用可在多项式时间内解决的内点和半定规划方法来解决这些问题。开发此研究计划和方向有两个主要目标。首先,所提出的研究计划的一个主要目标是“集成”线性、二次、凸、二阶锥规划中使用的大规模内点方法,以形成用“很少或很少的”生成相对布局和布线的基础。无重叠”,同时减少线长和面积。第二个主要目标是开发有前途的方法来“允许优化器扩展”;也就是说,当问题规模超过当前布局问题的一百万个约束和变量时,将实现可预测的快速运行时间。为了在未来五年内实现这些目标,将开发两种新方法来解决包含超过一百万个变量和约束的大型优化问题。首先,“无矩阵”内点方法的最新进展将使解决问题的范围和规模达到数百万或数十亿个变量和约束的数量级。其次,我们计划使用新的热启动技术来加速内点算法,以加快这些非常大问题的运行时间。 最初的重点将是为“标准单元”和“混合单元”技术生成超大规模集成(VLSI)电路布局,这些技术仍然构成集成电路设计的主要部分。其次,将开发基于分析的模型和大规模非线性内点求解器的探索,以解决现场可编程门阵列(FPGA)布局中出现的新出现的大型布局问题。 这项研究的另一个同样重要的“目标”是减少对模拟退火、遗传算法和禁忌搜索等搜索技术的需求,以进一步减少线长和面积以及时序、延迟、功耗和拥塞问题。在这个总体研究计划中,我们计划最少使用搜索技术来细化由强大的内点或半定规划求解器生成的可行起始解决方案。目的是使用布局、布局规划和全局布线的数学编程模型,并尽可能有效地解决它们,以减少或理想情况下消除对搜索技术的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vannelli, Anthony其他文献

Vannelli, Anthony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vannelli, Anthony', 18)}}的其他基金

Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
  • 批准号:
    RGPIN-2016-03833
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
  • 批准号:
    RGPIN-2016-03833
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
  • 批准号:
    RGPIN-2016-03833
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
  • 批准号:
    RGPIN-2016-03833
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
  • 批准号:
    RGPIN-2016-03833
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向大规模盲源分离的高维度大尺寸张量分解方法研究
  • 批准号:
    62071082
  • 批准年份:
    2020
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向科学大装置超大规模数据流的定制计算研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
    联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
  • 批准号:
    31771484
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于热点导航的大图数据迭代计算过程可视化关键技术研究
  • 批准号:
    61602103
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced 5G Open Platform for Large Scale Trials and Pilots across Europe (IMAGINE-B5G)
用于欧洲大规模试验和试点的先进 5G 开放平台 (IMAGINE-B5G)
  • 批准号:
    10052810
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    EU-Funded
Advanced large-scale damage estimation method using deep learning and 3D building models
使用深度学习和 3D 建筑模型的先进大规模损伤估计方法
  • 批准号:
    23K04108
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
XL-Connect Large scale system approach for advanced charging solutions
XL-Connect 用于高级充电解决方案的大规模系统方法
  • 批准号:
    10073057
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    EU-Funded
Advancing Epilepsy Diagnosis with Flexible, High-Resolution Thin-Film Electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
  • 批准号:
    10753771
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Data locality for sparse matrices via advanced optimisations in large-scale scientific programs
通过大规模科学项目中的高级优化实现稀疏矩阵的数据局部性
  • 批准号:
    22K17900
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了