Advancing Epilepsy Diagnosis with Flexible, High-Resolution Thin-Film Electrodes

利用灵活的高分辨率薄膜电极推进癫痫诊断

基本信息

项目摘要

Project Summary To advance the development of next-generation personalized therapies for long-term seizure freedom, we urgently need technologies that improve seizure diagnostics while reducing risks associated with invasive neurosurgical procedures. Among the more than 1,000,000 Americans with uncontrolled focal epilepsy, many have poorly localized seizure foci. These individuals face the highest rates of ‘failure’ (i.e., ongoing seizures) after epilepsy surgery. That failure reflects the biology of their epilepsy as well as the overlap of seizure foci with essential cortical areas. However, limits of current technologies also play a critical role in the high failure rate as we are currently limited in our ability to sample wide regions of the neocortex (i.e., stereoEEG) or to record broad neocortical regions without inducing pain, swelling, and neuroinflammatory tissue damage (i.e., subdural grid and strip recordings). To meet this need for safer, more effective invasive electrode studies and simultaneously enable discovery to advance next-generation therapies, this UG3/UH3 clinical trial project leverages a successful, long-term collaboration between clinicians, engineers, material scientists, neuroscientists and industrial partners at New York University School of Medicine, New York University, Duke University, the University of Utah, Blackrock Microsystems, and Dyconex to translate modern thin-film technology into next generation FDA-approved implantable neurological devices. We have developed and extensively tested a novel electrode array based on liquid crystal polymer thin-film (LCP-TF) technology with partner Dyconex, AG. When combined with large-scale data acquisition systems, LCP-TF electrodes will provide higher quality neural recordings than existing FDA approved electrode arrays, with improved safely and at an affordable cost. We propose to obtain traditional 510(k) approval from the FDA for short-term implantation (<30 days) of LCP-TF electrodes to (1) improve surgical tolerability for patients with neocortical, focal, drug-resistant epilepsy undergoing invasive electrode studies and (2) advance diagnostic capabilities to determine the location of seizure foci. Our preliminary work in a non-human primate animal model led to a prototype device nearly identical to the final device design planned for clinical testing. This work establishes supporting data for entry into preclinical testing in the 3-year UG3 phase (Aims 1-3) that will lead to 510(k)-approved devices (Aim 4) for a single-site, randomized-controlled pilot clinical trial in the 2-year UH3 phase (Aim 5) that will test the hypothesis that performing epilepsy diagnostic studies with LCP-TF electrodes, compared to CG electrodes, improves both surgical tolerability and diagnostic effectiveness. These efforts will advance the development of next-generation precision approaches to treating epilepsy as well as support future development of LCP-TF electrodes for other neurological disorders. Low-cost, FDA-approved LCP-TF electrodes have the potential to revolutionize the treatment of a wide range of neurological disorders
项目摘要 为了促进下一代个性化疗法的长期扣押自由,我们 迫切需要改善癫痫发作诊断的技术,同时降低与侵入性相关的风险 神经外科手术。在超过100万美国人患有焦点癫痫的美国人中,许多 局部癫痫发作焦点不足。这些人面临“失败”的最高率(即持续的癫痫发作) 癫痫手术后。这种失败反映了其癫痫的生物学以及癫痫病的重叠与 必需的皮质区域。但是,当前技术的限制在高失败率中也起着至关重要的作用 目前,我们无法采样新皮层(即Stereoeeg)或记录广泛区域的能力有限 新皮层区域没有诱发疼痛,肿胀和神经炎性组织损伤 和脱衣舞记录)。 满足对更安全,更有效的侵入性电极研究的需求,并简单地发现发现 提前下一代疗法,该UG3/UH3临床试验项目利用了成功的长期 临床医生,工程师,物质科学家,神经科学家和工业伙伴之间的合作 约克大学医学院,纽约大学,杜克大学,犹他大学,黑石 微系统和Dyconex将现代薄膜技术转化为下一代FDA批准 可植入的神经系统。我们已经开发并广泛测试了基于 液晶聚合物薄膜(LCP-TF)技术,伴侣Dyconex,Ag。当大规模结合 数据采集​​系统,LCP-TF电极将提供比现有FDA更高的质量神经记录 经过批准的电极阵列,并以可承受的成本进行了安全改进。 我们建议从FDA获得传统的510(k)批准,用于短期植入LCP-TF(<30天) (1)改善新皮质,局灶性,耐药性癫痫患者的手术耐受性 接受侵入性电极研究和(2)提高诊断能力以确定 癫痫发作焦点。我们在非人类灵长类动物模型中的初步工作导致了原型设备几乎相同 计划用于临床测试的最终设备设计。这项工作建立了支持数据的支持 在3年UG3阶段(目标1-3)中的临床前测试将导致510(k)批准的设备(AIM 4) 在2年UH3阶段(AIM 5)的单位点,随机控制的试验临床试验,该试验将检验假设 与CG电极相比,使用LCP-TF电极进行癫痫诊断研究可改善 手术耐受性和诊断有效性。这些努力将推动下一代的发展 治疗癫痫的精确方法以及支持其他LCP-TF电极的未来开发 神经系统疾病。低成本,FDA批准的LCP-TF电极有可能革新 多种神经系统疾病的治疗

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Robert Kyle Frankl...的其他基金

Advancing epilepsy diagnosis with flexible, high-resolution thin-film electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
  • 批准号:
    10297290
    10297290
  • 财政年份:
    2022
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:
Multi-channel MR-compatible flexible microelectrode for recording and stimulation
用于记录和刺激的多通道 MR 兼容柔性微电极
  • 批准号:
    9139158
    9139158
  • 财政年份:
    2016
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:

相似国自然基金

CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
  • 批准号:
    32100463
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
  • 批准号:
    21922410
  • 批准年份:
    2019
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
  • 批准号:
    81402157
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Comparative Modeling of Precision Breast Cancer Control Across the Translational Continuum - Supplement
跨转化连续体的乳腺癌精准控制的比较模型 - 补充
  • 批准号:
    10380482
    10380482
  • 财政年份:
    2020
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:
Alabama Clinical Trials Unit - Administrative Supplement: SARS-CoV-2 Testing
阿拉巴马州临床试验单位 - 行政补充:SARS-CoV-2 检测
  • 批准号:
    10166438
    10166438
  • 财政年份:
    2020
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:
Elucidating the role of Locus Coeruleus projections to the Cognitive Cerebellum in mouse models of Alzheimer's Disease (Administrative Supplement)
阐明蓝斑投射对阿尔茨海默氏病小鼠模型中认知小脑的作用(行政补充)
  • 批准号:
    10118991
    10118991
  • 财政年份:
    2019
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:
Exploratory Center of Excellence for Advancing Multimorbidity Science (CAMS)
促进多种疾病科学卓越探索中心 (CAMS)
  • 批准号:
    10121495
    10121495
  • 财政年份:
    2018
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别:
Development and Evaluation of Computerized Olfactory Training Program (COT) for Cognitive Decline in Early Alzheimer's Disease
针对早期阿尔茨海默病认知衰退的计算机嗅觉训练计划 (COT) 的开发和评估
  • 批准号:
    10614897
    10614897
  • 财政年份:
    2018
  • 资助金额:
    $ 14万
    $ 14万
  • 项目类别: