Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
基本信息
- 批准号:RGPIN-2018-04405
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning techniques are remarkably successful on detection and recognition tasks in computer vision, reaching better than human performance in some specific applications. In my research I will develop novel learning-based algorithms and methods for virtual reality where data driven interaction and environment modelling, as well as user interfaces, can significantly benefit from advances in computer vision. Visual tracking allows different virtual reality and augmented reality devices to remain registered and synchronized. Motion estimation of surfaces, objects and actors is crucial in motion capture and 3D interaction modelling. Multi-view stereo captures real-word environments enabling navigation through these environment based on geometric relationships. My research program will significantly improve visual tracking, motion and stereo algorithms with learning-based techniques by focusing on vision based measurement. Vision based measurement uses the camera as a measurement instrument to obtain a measurand through an associated measurement procedure and with an uncertainty. This is crucial but often overlooked in virtual and augmented reality where different sensors and sensing results need to be fused with each other but also combined with physical reality. The geometry but also the appearance of captured objects and characters must not only appear realistic on their own but also when integrated into the whole virtual or augmented reality. In my research program, I will develop methods that on the one hand use physical constraints on the learning and on the other hand use learning to obtain physically plausible models. I will work on making consistent long-term tracking possible, develop real-time learning methods for motion estimation and 3D capture, thereby advancing the state-of-the-art in virtual and augmented reality through a focus on vision based measurement.
深度学习技术在计算机视觉中的检测和识别任务方面取得了非常成功的成功,在某些特定应用中的表现要比人类表现更好。在我的研究中,我将开发基于学习的新型算法和虚拟现实方法,在这些算法中,数据驱动的互动和环境建模以及用户界面可以从计算机视觉的进步中显着受益。视觉跟踪允许不同的虚拟现实和增强现实设备保持注册和同步。表面,物体和参与者的运动估计对于运动捕获和3D相互作用建模至关重要。多视图立体声捕获了基于几何关系通过这些环境导航的现实环境。我的研究计划将通过专注于基于视觉的测量来显着改善基于学习的技术的视觉跟踪,运动和立体声算法。基于视觉的测量将摄像机用作测量仪器,通过相关的测量程序和不确定性获得测量和测量工具。这是至关重要的,但在虚拟和增强现实中经常被忽略,在这些现实中,不同的传感器和感应结果需要相互融合,但也与物理现实结合在一起。几何形状,而且捕获的对象和角色的外观不仅必须自行出现现实,而且还必须集成到整个虚拟或增强现实中时。在我的研究计划中,我将开发一种方法,这些方法一方面使用对学习的物理约束,另一方面使用学习来获得物理上合理的模型。我将努力使长期跟踪成为可能,开发运动估算和3D捕获的实时学习方法,从而通过重点关注基于视觉的测量方法来推进虚拟和增强现实的最新现实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lang, Jochen其他文献
Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells
- DOI:
10.1007/s00125-015-3558-z - 发表时间:
2015-06-01 - 期刊:
- 影响因子:8.2
- 作者:
Lebreton, Fanny;Pirog, Antoine;Lang, Jochen - 通讯作者:
Lang, Jochen
Multilevel control of glucose homeostasis by adenylyl cyclase 8
- DOI:
10.1007/s00125-014-3445-z - 发表时间:
2015-04-01 - 期刊:
- 影响因子:8.2
- 作者:
Raoux, Matthieu;Vacher, Pierre;Lang, Jochen - 通讯作者:
Lang, Jochen
Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells
- DOI:
10.1016/j.febslet.2014.05.031 - 发表时间:
2014-06-27 - 期刊:
- 影响因子:3.5
- 作者:
Milochau, Alexandra;Lagree, Valerie;Lang, Jochen - 通讯作者:
Lang, Jochen
Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells
- DOI:
10.1016/j.bbamcr.2006.08.054 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:5.1
- 作者:
Boal, Frederic;Le Pevelen, Severine;Lang, Jochen - 通讯作者:
Lang, Jochen
Scalable Kernel Correlation Filter with Sparse Feature Integration
- DOI:
10.1109/iccvw.2015.80 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:0
- 作者:
Montero, Andres Solis;Lang, Jochen;Laganiere, Robert - 通讯作者:
Laganiere, Robert
Lang, Jochen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lang, Jochen', 18)}}的其他基金
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Six Degrees-of-freedom Virtual Reality for Live Events
适用于现场活动的六自由度虚拟现实
- 批准号:
514599-2017 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Scene capture for next generation virtual reality
下一代虚拟现实的场景捕捉
- 批准号:
491365-2015 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于迁移学习的运动想象脑机接口的理论、方法与应用研究
- 批准号:62066028
- 批准年份:2020
- 资助金额:36 万元
- 项目类别:地区科学基金项目
面向脑卒中的运动想象脑电主动迁移学习建模及结合VR康复研究
- 批准号:61976133
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
基于不变性特征学习的多主体运动想象脑机接口研究
- 批准号:61906152
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用于运动想象的脑机接口深度学习模型的高效算法研究
- 批准号:61701270
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
统计结构学习方法及其在个体差异脑信号分析中的应用研究
- 批准号:61673312
- 批准年份:2016
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Deep South KUH Premier Research- Interdisciplinary Mentored Education (PRIME) Networking Core
深南 KUH 顶级研究 - 跨学科指导教育 (PRIME) 网络核心
- 批准号:
10724929 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别: