Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence

通过群体智能实现高度交互的网络多媒体服务

基本信息

  • 批准号:
    RGPIN-2019-04040
  • 负责人:
  • 金额:
    $ 5.39万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the advances in social, mobile and cloud computing, crowdsourcing has become the norm in today's digital media production and sharing, which utilizes the collective effort of users in the online community. With no doubt, networked services in the future will focus on the user experience and participation with rich media from the crowd. The boundless coverage of socialized media sharing however presents unprecedented scale challenges. Highly diversified content types, origins, and distribution channels further impose complex interactions among the individual participants, particularly for advanced immersive applications such as interactive livecast/gamecast, multi-party media production, online gaming and augmented reality (AR). Their demands on quality and responsiveness are much higher (e.g., latency in the order of 100 ms, or even 10 ms for AR) than conventional IPTV or VoIP. These rich interactions, on the other hand, provide rich and low cost data that were previously unavailable. Leveraging advanced data analytics and learning tools, the hidden intelligence from the crowd can be unveiled toward better system design. For instance, inferring game progress from live chat messages and tracking viewport through gaze patterns for resource reservation and display optimization. Yet uncalibrated data in the wild can be highly noisy, not to mention the intrinsic heterogeneity and dynamics of the Internet. Our research is guided by the following critical question: How can massive digital media content be effectively generated and delivered among the crowd with intensive online interactions and with the intelligence therein? Our long-term objective is to systematically examine the challenges in advanced interactive and crowdsourced multimedia services and to develop integrated solutions that will accommodate and utilize the interactions. A series of issues are to be addressed within the solution framework: (1) Online analysis of crowdsourced interaction data; (2) Advanced computing and communication architecture, in particular, cloud-edge collaboration for delay-sensitive applications; (3) Ultra-low-latency and -energy data transport. Beyond simply putting the individual results together, the design of individual modules will be revisited during system integration. This iterative process will eventually lead to an optimized coherent design, making the future multimedia services agile, efficient, and intelligent, and, in the long run, benefiting emerging applications without human-in-the-loop, such as assisted/autonomous driving. My team's broad expertise with state-of-the-art computing and communication systems has prepared us for exploring these new research frontiers. We will train highly qualified personnel and will nurture extensive collaboration with academic researchers worldwide, as well as with local and international industrial partners to pursue technology transfers, so as to raise Canada's global profile in this priority area.
随着社交、移动和云计算的进步,众包已成为当今数字媒体制作和共享的常态,它利用了在线社区中用户的集体努力。毫无疑问,未来的网络服务将侧重于用户体验和人群富媒体参与。然而,社交媒体共享的无边覆盖带来了前所未有的规模挑战。高度多样化的内容类型、来源和分发渠道进一步加剧了个体参与者之间复杂的交互,特别是对于交互式直播/游戏直播、多方媒体制作、在线游戏和增强现实 (AR) 等高级沉浸式应用。他们对质量和响应能力的要求比传统 IPTV 或 VoIP 高得多(例如,延迟约为 100 毫秒,对于 AR 甚至为 10 毫秒)。 另一方面,这些丰富的交互提供了以前无法获得的丰富且低成本的数据。利用先进的数据分析和学习工具,可以揭示人群中隐藏的情报,从而实现更好的系统设计。例如,从实时聊天消息推断游戏进度,并通过注视模式跟踪视口以进行资源预留和显示优化。然而,未经校准的野外数据可能非常嘈杂,更不用说互联网固有的异质性和动态性了。我们的研究以以下关键问题为指导:如何通过密集的在线互动和其中的智能在人群中有效生成和传递海量数字媒体内容?我们的长期目标是系统地研究先进的交互式和众包多媒体服务中的挑战,并开发适应和利用交互的集成解决方案。该解决方案框架需要解决一系列问题:(1)众包交互数据的在线分析; (2)先进的计算和通信架构,特别是时延敏感应用的云边协同; (3)超低时延、低能耗的数据传输。除了简单地将各个结果放在一起之外,系统集成期间还将重新审视各个模块的设计。这个迭代过程最终将带来优化的连贯设计,使未来的多媒体服务变得敏捷、高效和智能,从长远来看,将有利于无需人在环的新兴应用,例如辅助/自动驾驶。我的团队在最先进的计算和通信系统方面拥有广泛的专业知识,为我们探索这些新的研究前沿做好了准备。我们将培养高素质人才,并与世界各地的学术研究人员以及本地和国际工业合作伙伴开展广泛的合作,以寻求技术转让,从而提高加拿大在这一优先领域的全球形象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Jiangchuan其他文献

RoArray: Towards More Robust Indoor Localization Using Sparse Recovery with Commodity WiFi
Lightweight Imitation Learning for Real-Time Cooperative Service Migration
  • DOI:
    10.1109/tmc.2023.3239845
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ning, Zhaolong;Chen, Handi;Liu, Jiangchuan
  • 通讯作者:
    Liu, Jiangchuan
Reliable and Practical Bluetooth Backscatter With Commodity Devices
  • DOI:
    10.1109/tnet.2021.3068865
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen, Si;Zhang, Maolin;Liu, Jiangchuan
  • 通讯作者:
    Liu, Jiangchuan
Understanding the Characteristics of Internet Short Video Sharing: A YouTube-Based Measurement Study
  • DOI:
    10.1109/tmm.2013.2265531
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Cheng, Xu;Liu, Jiangchuan;Dale, Cameron
  • 通讯作者:
    Dale, Cameron
WHEN RFID MEETS DEEP LEARNING: EXPLORING COGNITIVE INTELLIGENCE FOR ACTIVITY IDENTIFICATION
  • DOI:
    10.1109/mwc.2019.1800405
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Fan, Xiaoyi;Wang, Fangxin;Liu, Jiangchuan
  • 通讯作者:
    Liu, Jiangchuan

Liu, Jiangchuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Jiangchuan', 18)}}的其他基金

Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
  • 批准号:
    RGPIN-2019-04040
  • 财政年份:
    2021
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
  • 批准号:
    RGPIN-2019-04040
  • 财政年份:
    2020
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Understand the challenges and potentials of serverless computing for realtime networked multimedia
了解实时网络多媒体的无服务器计算的挑战和潜力
  • 批准号:
    543280-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Engage Grants Program
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
  • 批准号:
    RGPIN-2019-04040
  • 财政年份:
    2019
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
  • 批准号:
    RGPIN-2014-04765
  • 财政年份:
    2018
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
  • 批准号:
    RGPIN-2014-04765
  • 财政年份:
    2017
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative edge and cloud learning: Potentials and solutions
协作边缘和云学习:潜力和解决方案
  • 批准号:
    522129-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Engage Grants Program
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
  • 批准号:
    RGPIN-2014-04765
  • 财政年份:
    2016
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Deployment of networking and cloud architectures for intelligent camera network
智能摄像机网络的网络和云架构部署
  • 批准号:
    507132-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Engage Grants Program
Nomination for NSERC Steacie Memorial Fellowship
NSERC Steacie 纪念奖学金提名
  • 批准号:
    468747-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 5.39万
  • 项目类别:
    EWR Steacie Fellowships - Salary

相似国自然基金

高度杂泛性的植物糖基转移酶UGT74AN3的功能、结构和应用研究
  • 批准号:
    82304333
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于消费级装备的不同高度单株立木实景三维建模方法
  • 批准号:
    32371867
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
环北极地区泰加林冠层高度的遥感反演和制图研究
  • 批准号:
    42306254
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新候选基因NAALAD2在高度近视发生发展过程中的作用机理研究
  • 批准号:
    82301223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑曲率的卫星高度计海表流场的修正及应用研究
  • 批准号:
    42306028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Highly Interactive Visual Analytics
高度互动的视觉分析
  • 批准号:
    RGPIN-2016-05739
  • 财政年份:
    2021
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
  • 批准号:
    RGPIN-2019-04040
  • 财政年份:
    2021
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Healthinote: a highly visual and interactive health platform
Healthinote:高度可视化和互动的健康平台
  • 批准号:
    830159
  • 财政年份:
    2020
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Innovation Loans
Highly Interactive Visual Analytics
高度互动的视觉分析
  • 批准号:
    RGPIN-2016-05739
  • 财政年份:
    2020
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
  • 批准号:
    RGPIN-2019-04040
  • 财政年份:
    2020
  • 资助金额:
    $ 5.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了