Collaborative edge and cloud learning: Potentials and solutions
协作边缘和云学习:潜力和解决方案
基本信息
- 批准号:522129-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The data generated and contributed by today's personal computing devices, ranging from text, voice, to pictureand video, are enormous and contain invaluable information worth discovering. Recent advances in deep neuralnetworking have shown great potentials in exploring the hidden information therein. Deep learning relies onstrong computation power to process the massive amount of data, which is typical offered by machine clusters,or more general, modern data centers. While cloud-centric learning works well for the data that are available indatacenters, gathering the data from worldwide sources unavoidably incurs high traffic and, more importantly,latency that challenges such realtime learning applications as face recognition and human tracking in cameranetworks. The concept of edge computing has been recently advocated as a complement to cloud computing. Itpushes applications, data, and computing content away from the centralized data centers. As such, it cansignificantly accelerate the training process by reducing the traffic transferred to the cloud and the inferencelatency for a broad spectrum of deep learning applicationsHuawei is an industrial pioneer in building the communication and computation infrastructure for edgecomputing, and has started building its public cloud infrastructure as well. In this project, we will worktogether to understand the state-of-the-art of collaborative edge and cloud learning. We will identify theopportunities and challenges on how to push data pre-processing and feature extracting to the network edge.We will then develop novel solutions that minimize the network traffic and inference latency yet with desiredaccuracy for deep learning.
当今的个人计算设备生成和提供的数据(从文本、语音到图片和视频)数量巨大,并且包含值得发现的宝贵信息。深度神经网络的最新进展显示出探索其中隐藏信息的巨大潜力。深度学习依靠强大的计算能力来处理大量数据,这通常由机器集群或更普遍的现代数据中心提供。虽然以云为中心的学习对于数据中心中的可用数据效果很好,但从全球来源收集数据不可避免地会产生高流量,更重要的是,延迟会对摄像头网络中的人脸识别和人体跟踪等实时学习应用提出挑战。边缘计算的概念最近被提倡作为云计算的补充。它将应用程序、数据和计算内容推离集中式数据中心。因此,它可以通过减少传输到云端的流量和广泛的深度学习应用的推理延迟来显着加速训练过程华为是构建边缘计算通信和计算基础设施的行业先驱,并已开始构建其公共云基础设施以及。在这个项目中,我们将共同努力了解协作边缘和云学习的最新技术。我们将确定如何将数据预处理和特征提取推至网络边缘的机遇和挑战。然后,我们将开发新颖的解决方案,最大限度地减少网络流量和推理延迟,同时达到深度学习所需的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, Jiangchuan其他文献
RoArray: Towards More Robust Indoor Localization Using Sparse Recovery with Commodity WiFi
- DOI:
10.1109/tmc.2018.2860018 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:7.9
- 作者:
Gong, Wei;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Lightweight Imitation Learning for Real-Time Cooperative Service Migration
- DOI:
10.1109/tmc.2023.3239845 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:7.9
- 作者:
Ning, Zhaolong;Chen, Handi;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Reliable and Practical Bluetooth Backscatter With Commodity Devices
- DOI:
10.1109/tnet.2021.3068865 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Chen, Si;Zhang, Maolin;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Understanding the Characteristics of Internet Short Video Sharing: A YouTube-Based Measurement Study
- DOI:
10.1109/tmm.2013.2265531 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:7.3
- 作者:
Cheng, Xu;Liu, Jiangchuan;Dale, Cameron - 通讯作者:
Dale, Cameron
Propagation-based social-aware multimedia content distribution
基于传播的社交感知多媒体内容分发
- DOI:
10.1145/2523001.2523005 - 发表时间:
2013-10 - 期刊:
- 影响因子:0
- 作者:
Wang, Zhi;Zhu, Wenwu;Chen, Xiangwen;Sun, Lifeng;Liu, Jiangchuan;Chen, Minghua;Cui, Peng;Yang, Shiqiang - 通讯作者:
Yang, Shiqiang
Liu, Jiangchuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, Jiangchuan', 18)}}的其他基金
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Understand the challenges and potentials of serverless computing for realtime networked multimedia
了解实时网络多媒体的无服务器计算的挑战和潜力
- 批准号:
543280-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deployment of networking and cloud architectures for intelligent camera network
智能摄像机网络的网络和云架构部署
- 批准号:
507132-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Nomination for NSERC Steacie Memorial Fellowship
NSERC Steacie 纪念奖学金提名
- 批准号:
468747-2015 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
EWR Steacie Fellowships - Salary
相似国自然基金
面向移动边缘网络的高效智能云边端协同调度机制
- 批准号:62302343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向无服务器边缘云的智能服务部署与自动伸缩方法研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
面向云原生边缘计算的编排部署与运行时调度优化方法研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
面向云原生边缘计算的编排部署与运行时调度优化方法研究
- 批准号:62172375
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
边缘云计算架构下高速铁路运行控制系统设备故障诊断
- 批准号:62120106011
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Scalable Specialization in Distributed Edge-Cloud Systems – The Extended Reality Case
协作研究:PPoSS:大型:分布式边缘云系统的可扩展专业化 — 扩展现实案例
- 批准号:
2217144 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
- 批准号:
2228472 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
RINGS: Collaborative Inference and Learning between Edge Swarms and the Cloud
RINGS:边缘群和云之间的协作推理和学习
- 批准号:
2148186 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
- 批准号:
2228470 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CNS: Efficient Data Communication and Processing for Intelligent Medical Systems with Edge-Cloud Interplay
合作研究:CISE-MSI:DP:CNS:具有边缘-云交互的智能医疗系统的高效数据通信和处理
- 批准号:
2219742 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant