Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
基本信息
- 批准号:RGPIN-2018-05243
- 负责人:
- 金额:$ 9.32万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of bio-inspired materials is founded on the premise that humans can learn something from nature about creating versatile high-performance materials for a wide variety of functions through sustainable and economical processing. Our research program focuses on mussel byssus fibers, which provide an excellent role model for bio-inspired polymers due to technologically and biomedically relevant materials properties (high toughness, self-healing, wet adhesion). Our previous work indicates these properties arise from hierarchical organization of protein building blocks and protein-metal coordination cross-linking. Presently, however, little is understood about how this high degree of structural complexity is achieved during byssus formation. The goals of our research program are to elucidate the byssus self-assembly process and utilize extracted design concepts towards the development of bio-inspired materials processing.Mussel byssus fibers are rapidly fabricated via bottom-up self-assembly of >10 different proteins, which undergo a dramatic transition from fluid precursor to tough fiber in just minutes. Our recent work indicates that byssus proteins are stored in micron-sized secretory vesicles, which are secreted in a spatiotemporally controlled process. We hypothesize that vesicles possess a controlled microenvironment (pH, ionic strength and redox potential) and that self-assembly is triggered via changing ambient conditions and mechanical shear as the stimuli responsive proteins are released from secretory glands into seawater. We posit that by elucidating the spatiotemporal control and physical chemical principles at play in byssus assembly, we will gain new insights for inspiring sustainable practices for fabricating polymeric materials with advanced properties via supramolecular assembly.Building off our group's work over the last 7 years, the primary aims are I) Elucidate physical chemical principles underlying mussel byssus self-assembly through in situ and in vitro investigation of byssus formation. II) Adapt extracted principles towards assembly of novel polymeric materials with hierarchical structure via novel microfluidics-based materials processing. These aims will be achieved through a multi-scale, cross-disciplinary investigation at the interface of chemistry, biochemistry and materials science, utilizing cutting edge analytical techniques including confocal Raman spectroscopy, focused ion beam scanning electron microscopy (FIB-SEM) and cryo-transmission electron microscopy (TEM). The long-term aim of our program is production of polymeric materials that combine high performance with sustainable fabrication practices and circular life cycles. This will have tangible benefits for Canada, both economically and environmentally, in the emerging green technologies industry.
仿生材料领域的前提是人类可以从大自然中学习一些东西,通过可持续和经济的加工来创造具有多种功能的多功能高性能材料。我们的研究项目重点关注贻贝足丝纤维,由于技术和生物医学相关的材料特性(高韧性、自修复、湿粘附),该纤维为仿生聚合物提供了极好的榜样。我们之前的工作表明这些特性源于蛋白质构建块的分层组织和蛋白质-金属配位交联。然而,目前人们对足丝形成过程中如何实现如此高度的结构复杂性知之甚少。我们研究计划的目标是阐明足丝自组装过程,并利用提取的设计概念来开发仿生材料加工。贻贝足丝纤维是通过超过 10 种不同蛋白质的自下而上自组装快速制造的,这在短短几分钟内经历从流体前体到坚韧纤维的戏剧性转变。我们最近的工作表明,足丝蛋白储存在微米大小的分泌囊泡中,这些分泌囊泡以时空控制的过程进行分泌。我们假设囊泡具有受控的微环境(pH、离子强度和氧化还原电位),并且当刺激响应蛋白从分泌腺释放到海水中时,通过改变环境条件和机械剪切来触发自组装。我们认为,通过阐明足丝组装中的时空控制和物理化学原理,我们将获得新的见解,以启发通过超分子组装制造具有先进性能的聚合物材料的可持续实践。在我们小组过去 7 年的工作的基础上,主要目标是 I) 通过对足丝形成的原位和体外研究,阐明贻贝足丝自组装的物理化学原理。 II)通过基于微流体的新型材料加工,采用提取的原理来组装具有分层结构的新型聚合物材料。这些目标将通过化学、生物化学和材料科学交叉领域的多尺度、跨学科研究来实现,利用包括共焦拉曼光谱、聚焦离子束扫描电子显微镜(FIB-SEM)和冷冻技术在内的尖端分析技术。透射电子显微镜(TEM)。我们计划的长期目标是生产将高性能与可持续制造实践和循环生命周期相结合的聚合物材料。这将为加拿大在新兴绿色技术行业的经济和环境方面带来实实在在的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harrington, Matthew其他文献
A retrospective evaluation of vitamin K for hemoptysis in adult cystic fibrosis patients
- DOI:
10.1080/21548331.2021.1905413 - 发表时间:
2021-08-08 - 期刊:
- 影响因子:0
- 作者:
Gavioli, Elizabeth Marie;Pao, Kevin;Harrington, Matthew - 通讯作者:
Harrington, Matthew
Possible association of influenza A infection and reverse takotsubo syndrome.
- DOI:
10.1136/bcr-2018-226289 - 发表时间:
2018-12-14 - 期刊:
- 影响因子:0.9
- 作者:
Golfeyz, Shmuel;Kobayashi, Takaaki;Harrington, Matthew - 通讯作者:
Harrington, Matthew
Not so Obvious: Acute Herpes Esophagitis
- DOI:
10.1016/j.amjmed.2017.05.010 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:5.9
- 作者:
Yamada, Yuji;Rodriguez, Carlos;Harrington, Matthew - 通讯作者:
Harrington, Matthew
Harrington, Matthew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harrington, Matthew', 18)}}的其他基金
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
RGPIN-2018-05243 - 财政年份:2021
- 资助金额:
$ 9.32万 - 项目类别:
Discovery Grants Program - Individual
ATR-FTIR microscope and fluid cell for tracking hierarchical assembly of molecules to materials
ATR-FTIR 显微镜和流体池用于跟踪分子到材料的分层组装
- 批准号:
RTI-2021-00152 - 财政年份:2020
- 资助金额:
$ 9.32万 - 项目类别:
Research Tools and Instruments
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
RGPIN-2018-05243 - 财政年份:2020
- 资助金额:
$ 9.32万 - 项目类别:
Discovery Grants Program - Individual
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
RGPIN-2018-05243 - 财政年份:2019
- 资助金额:
$ 9.32万 - 项目类别:
Discovery Grants Program - Individual
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
522488-2018 - 财政年份:2019
- 资助金额:
$ 9.32万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
522488-2018 - 财政年份:2018
- 资助金额:
$ 9.32万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
- 批准号:72302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
- 批准号:32001001
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 9.32万 - 项目类别:
Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
- 批准号:
10682295 - 财政年份:2023
- 资助金额:
$ 9.32万 - 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
- 批准号:
10622691 - 财政年份:2023
- 资助金额:
$ 9.32万 - 项目类别:
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
- 批准号:
10605021 - 财政年份:2023
- 资助金额:
$ 9.32万 - 项目类别: