Reciprocal Perspective Machine Learning to Identify Relationships in Sparse Biological Networks

交互视角机器学习识别稀疏生物网络中的关系

基本信息

  • 批准号:
    RGPIN-2021-04184
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Our lab focuses on the development of machine learning (ML) approaches to solve problems in biomedical informatics, particularly in the presence of class imbalance where events of interest are rare among all data. Recently, our lab has developed a number of semi-supervised ML approaches that learn from both labeled and unlabeled data. Such approaches are relevant for many problem domains, especially within bioinformatics, where we often have large quantities of unlabeled data (e.g. genomic or proteomic sequence data), but acquiring labeled data requires costly experiments. Our research is motivated by a common story in bioinformatics: we create the best predictor possible for a given task, given the limited training data available. At great computational expense, we then apply the predictor to all available unlabeled data and report the "top predictions" representing novel testable hypotheses for wet-lab collaborators. But can't we leverage this enormous computational investment to improve the underlying prediction model? This story led to one of our most exciting recent discoveries, the Reciprocal Perspective (RP) paradigm, which learns from the structure of the distribution of prediction scores over a large body of unlabeled samples. In this way, each prediction is evaluated in the context of all possible predictions involving each element. RP is particularly well-suited to pairwise prediction problems where one aims to predict links between nodes in a sparse network. Using RP, we have demonstrated significant performance improvements for predicting protein-protein interactions and microRNA targets. We propose to extend and apply these semi-supervised ML approaches to continue our long-term research goals of improving the predictive performance of ML models applied to domains challenged by class imbalance. This research program will extend and generalize the RP paradigm to create a robust semi-supervised ML framework, broadly applicable to disparate domains. In particular, we will develop the fusion of RP with multi-view co-training; explore RP as a means to combine multiple experts to arrive at improved consensus decisions; achieve the conceptual merger of RP with semi-supervised transductive learning; and extend the RP paradigm beyond pairwise predictions to the N-dimensional case. Our lab has a demonstrated record of successful, innovative, and impactful interdisciplinary research in biomedical informatics. The novel ML methodology to be developed within this research program will be translated and applied to several problem domains via established and effective collaborations. This research will achieve impact in fundamental ML research, in biomedical informatics, and beyond.
我们的实验室重点是解决生物医学信息学问题的机器学习方法(ML)方法,尤其是在所有数据中很少见的阶级失衡的情况下。最近,我们的实验室开发了许多半监督的ML方法,这些方法从标记和未标记的数据中学习。这种方法与许多问题域有关,尤其是在生物信息学中,在这种情况下,我们通常拥有大量未标记的数据(例如基因组或蛋白质组学序列数据),但是获取标记的数据需要昂贵的实验。 我们的研究是出于生物信息学中常见故事的动机:鉴于可用的培训数据有限,我们为给定任务创造了最佳的预测指标。然后,我们以大量的计算费用将预测变量应用于所有可用的未标记数据,并报告代表湿LAB协作者可检验的新假设的“顶级预测”。但是,我们不能利用这项巨大的计算投资来改善基本预测模型吗? 这个故事导致了我们最近的最令人兴奋的发现之一,即互惠观点(RP)范式,该范式从大量未标记的样本中的预测分数分布的结构中学习。这样,每个预测都会在涉及每个元素的所有可能预测的上下文中进行评估。 RP特别适合成对预测问题,其中一个人旨在预测稀疏网络中的节点之间的联系。 使用RP,我们显示了预测蛋白质 - 蛋白质相互作用和microRNA靶标的显着性能改善。我们建议扩展和应用这些半监督的ML方法,以继续我们的长期研究目标,以提高应用于阶级不平衡挑战的领域的ML模型的预测性能。该研究计划将扩展和推广RP范式,以创建一个强大的半监督ML框架,该框架广泛适用于不同的域。特别是,我们将开发RP与多视图共同训练的融合;探索RP作为结合多个专家的一种手段,以提高共识决定;通过半监督的跨示导性学习,实现RP的概念合并;并将RP范式扩展到成对预测之外的N维情况。 我们的实验室在生物医学信息学领域有了成功,创新和有影响力的跨学科研究的记录。该研究计划中要开发的新型ML方法将通过既定有效的合作进行翻译并应用于几个问题领域。这项研究将对基本ML研究,生物医学信息学及其他地区产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Green, James其他文献

Citations and science
Internet use in an orthopaedic outpatient population
  • DOI:
    10.1097/bco.0b013e31828e542b
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Baker, Joseph F.;Green, James;Mulhall, Kevin J.
  • 通讯作者:
    Mulhall, Kevin J.
Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas
  • DOI:
    10.1371/journal.ppat.1001305.s001
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Green, James;Petherbridge, Lawrence;Kgosana, Lydia
  • 通讯作者:
    Kgosana, Lydia
Child pedestrian casualties and deprivation
  • DOI:
    10.1016/j.aap.2010.10.016
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Green, James;Muir, Helen;Maher, Mike
  • 通讯作者:
    Maher, Mike
Quality and Variability of Patient Directions in Electronic Prescriptions in the Ambulatory Care Setting.
  • DOI:
    10.18553/jmcp.2018.17404
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yang, Yuze;Ward-Charlerie, Stacy;Dhavle, Ajit A.;Rupp, Michael T.;Green, James
  • 通讯作者:
    Green, James

Green, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Green, James', 18)}}的其他基金

Reciprocal Perspective Machine Learning to Identify Relationships in Sparse Biological Networks
交互视角机器学习识别稀疏生物网络中的关系
  • 批准号:
    RGPIN-2021-04184
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Metal Mediated and Catalyzed Organic Synthetic Methods
金属介导和催化的有机合成方法
  • 批准号:
    RGPIN-2022-04761
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Unobtrusive neonatal patient monitoring using video and pressure data
使用视频和压力数据进行不引人注目的新生儿患者监测
  • 批准号:
    543940-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Metal Mediated and Catalyzed Organic Synthetic Methods
金属介导和催化的有机合成方法
  • 批准号:
    RGPIN-2016-04946
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Effective prediction of microRNAs in the face of class imbalance
面对类别不平衡时有效预测 microRNA
  • 批准号:
    RGPIN-2016-06179
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Metal Mediated and Catalyzed Organic Synthetic Methods
金属介导和催化的有机合成方法
  • 批准号:
    RGPIN-2016-04946
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Unobtrusive neonatal patient monitoring using video and pressure data
使用视频和压力数据进行不引人注目的新生儿患者监测
  • 批准号:
    543940-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Effective prediction of microRNAs in the face of class imbalance
面对类别不平衡时有效预测 microRNA
  • 批准号:
    RGPIN-2016-06179
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Unobtrusive neonatal patient monitoring using video and pressure data
使用视频和压力数据进行不引人注目的新生儿患者监测
  • 批准号:
    543940-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Metal Mediated and Catalyzed Organic Synthetic Methods
金属介导和催化的有机合成方法
  • 批准号:
    RGPIN-2016-04946
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Meta-learning from a dual machine-learning and biological perspective
机器学习和生物学双重角度的元学习
  • 批准号:
    2734013
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
Reciprocal Perspective Machine Learning to Identify Relationships in Sparse Biological Networks
交互视角机器学习识别稀疏生物网络中的关系
  • 批准号:
    RGPIN-2021-04184
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Medication use in community-dwelling older adults with dementia in Ontario: Applying machine learning techniques to better describe potentially inappropriate prescribing and psychotropic polypharmacy, while integrating patient and care partner perspective
安大略省社区居住的痴呆症老年人的药物使用:应用机器学习技术更好地描述潜在的不当处方和精神药物复方用药,同时整合患者和护理伙伴的观点
  • 批准号:
    460393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了