Quantum dynamics, entanglement, and computation: theory and simulation algorithms

量子动力学、纠缠和计算:理论和模拟算法

基本信息

  • 批准号:
    RGPIN-2020-05607
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The anticipated "second quantum revolution" aims to exploit dynamics and entanglement in quantum systems to accelerate information processing and to access novel electronic properties in materials. Near-term quantum devices, which promise exponential speedups over classical computers, as well as quantum states of matter with extraordinary properties are becoming increasingly available in ultracold-atom and solid-state setups. Recognizing the early advances in quantum technologies and anticipating those yet to come, this research project will address the challenge of simulating quantum dynamics on classical computers. To this end, we will develop new theoretical and numerical approaches based on the physics of entanglement in strongly correlated quantum systems. Furthermore, we will apply the same tools to quantum-mechanical reformulations of computational problems, to develop efficient quantum-inspired algorithms for classical computational challenges, such as those encountered in artificial intelligence. The main tool that we will use is that of tensor networks. Our studies of dynamics in quantum systems will elucidate the mechanisms that generate entanglement, both in quantum matter and in quantum computations. Detailed knowledge of the entanglement landscape in a particular problem will allow us to efficiently simulate quantum computations as well as dynamical properties of advanced quantum materials, and also to obtain efficient methods of solution for some challenging computational problems. Specifically, this research will advance the simulation of evolution and measurement in quantum systems in the context of the simulation of quantum computation. The algorithms we will develop will be useful in modeling computations carried out by quantum devices, including the ones currently developed by companies like IBM and Google. We will use the same methods to model the dynamical responses of quantum matter to experimental probes, as well as the dynamics of nontrivial excited states in novel quantum systems. Finally, we have found that tensor network methods are also useful for solving some hard and pervasive classical computational problems, and hence the techniques we will develop will also be applicable to classes of combinatorial optimization, sampling, and counting. Our techniques are therefore of great relevance to the fields of machine learning and data science.
预期的“第二次量子革命”旨在利用量子系统中的动力学和纠缠来加速信息处理并获得材料中新颖的电子特性。近期量子设备有望比传统计算机实现指数级加速,并且具有非凡特性的物质量子态在超冷原子和固态装置中变得越来越可用。该研究项目认识到量子技术的早期进展并预测未来的进展,将解决在经典计算机上模拟量子动力学的挑战。为此,我们将基于强相关量子系统中的纠缠物理学开发新的理论和数值方法。此外,我们将应用相同的工具来重新表述计算问题的量子力学,以开发有效的量子启发算法来应对经典计算挑战,例如人工智能中遇到的挑战。我们将使用的主要工具是张量网络。我们对量子系统动力学的研究将阐明在量子物质和量子计算中产生纠缠的机制。对特定问题中纠缠景观的详细了解将使我们能够有效地模拟量子计算以及先进量子材料的动力学特性,并获得一些具有挑战性的计算问题的有效解决方法。具体来说,这项研究将在量子计算模拟的背景下推进量子系统演化和测量的模拟。我们将开发的算法将有助于对量子设备进行的计算进行建模,包括目前由 IBM 和 Google 等公司开发的算法。我们将使用相同的方法来模拟量子物质对实验探针的动态响应,以及新型量子系统中非平凡激发态的动力学。最后,我们发现张量网络方法对于解决一些困难且普遍的经典计算问题也很有用,因此我们将开发的技术也适用于组合优化、采样和计数等类别。因此,我们的技术与机器学习和数据科学领域密切相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kourtis, Stefanos其他文献

Nonuniversal entanglement level statistics in projection-driven quantum circuits
投影驱动量子电路中的非普适纠缠级统计
  • DOI:
    10.1103/physrevb.101.235104
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Lei;Reyes, Justin A.;Kourtis, Stefanos;Chamon, Claudio;Mucciolo, Eduardo R.;Ruckenstein, Andrei E.
  • 通讯作者:
    Ruckenstein, Andrei E.
Qubit vitrification and entanglement criticality on a quantum simulator
量子模拟器上的量子位玻璃化和纠缠临界性
  • DOI:
    10.1038/s41467-022-34982-3
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cote, Jeremy;Kourtis, Stefanos
  • 通讯作者:
    Kourtis, Stefanos

Kourtis, Stefanos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kourtis, Stefanos', 18)}}的其他基金

Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    DGECR-2020-00218
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    DGECR-2020-00218
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非平衡量子多体体系中的纠缠动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
发展量子纠缠轨线方法研究多原子碰撞过程中的量子效应
  • 批准号:
    11904252
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
分形晶格上自旋系统量子纠缠动力学与量子热化
  • 批准号:
    11905095
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
量子开放体系动力学的纠缠轨线理论研究
  • 批准号:
    11804213
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
与引力量子真空涨落耦合的开放量子系统的动力学演化
  • 批准号:
    11805063
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Cellular Automata Dynamics: Integrability, Many-Body Decoherence, and Complex Entanglement
量子元胞自动机动力学:可积性、多体退相干和复杂纠缠
  • 批准号:
    2210566
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
  • 批准号:
    RGPIN-2020-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions
量子信息遇上量子物质:量子相变的长程纠缠和动力学
  • 批准号:
    2138905
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Dynamics and entanglement near quantum phase transitions
量子相变附近的动力学和纠缠
  • 批准号:
    RGPIN-2016-06667
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了