Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions

量子信息遇上量子物质:量子相变的长程纠缠和动力学

基本信息

  • 批准号:
    2138905
  • 负责人:
  • 金额:
    $ 54.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Nontechnical SummaryThis award supports a program that integrates theoretical and computational research, education, and outreach at the intersection of quantum materials and quantum information. One of the major goals of quantum materials and matter is to understand how new kinds of organizations of electrons and atoms emerge from simple interactions, such as magnetism and superconductivity. Quantum information on the face of it is a very different discipline which deals with information coded in qubits rather than the classical bits, 0 and 1. This program brings together ideas of entanglement between qubits, explores their existence in quantum magnets, and elucidates their unique properties.Quantum systems show unusual properties not exhibited by classical systems, for example a single electron can behave both as a particle and a wave. An even more mind boggling and “weird” property, observable for two electrons or two photons (quanta of light), is quantum entanglement. If two electrons are created in a superposition of quantum states—say (1up, 2down) + (1down, 2up) where up and down indicate the direction of the angular momentum of the spinning electron. Now when one qubit is sent to observer A and the other to B, far apart so they cannot communicate with each other, something truly unbelievable happens: If A detects a spin up electron, B necessarily finds an electron with opposite spin. The two spins are entangled. Their precise spin orientations are revealed only when one of them is observed, at which point the spin of the other also gets precisely determined, even though physically very far from the observed electron. Recently, such entanglement was spectacularly demonstrated between photons separated by over 1200 km.Such entanglement occurs not just between two spins but between billions of spins that exist in magnetic materials with frustration. The emergent state of matter is called a quantum spin liquid. Frustration can arise due to competing interactions and lattice geometry preventing the spins from ordering and forming a magnet. It may appear that with no ordering all is lost, but no! the entangled soup is useful for creating aspecial kind of qubit called a topological qubit in which information can be stored in a non-local manner and remains protected from environmental effects that can scramble the information they contain. The goal of this project is to put together the theoretical foundation for quantum entanglement and its signatures in quantum materials.The research activity will go hand in hand with an education and outreach program. A holistic course on quantum information meets quantum matter that integrates the standard material with simulations, experiments, and current day research will be developed. The PI is a founder of the Scientific Thinkers program for elementary schools whose motto is “Meet a scientist, Be a scientist, Think like a scientist”. By developing videos on experiments using easily available materials, the engagement of volunteers from Ohio State with the school children and teachers will be greatly enhanced. The PI will develop the Culture Change in Physics (CHIP) program by creating recordings of women in physics and by connecting with the National Society of Black Physicists.Technical SummaryThis award supports theoretical and computational research and education in quantum materials, quantum matter, and related phenomena. Quantum systems show unusual non-classical properties, including quantum coherence, superposition and interference. But the most mind boggling and “weird” of all is quantum entanglement. Two-particle entanglement has been verified experimentally primarily using photons. This project aims toward the next frontier of multi-particle entanglement in quantum spin liquids (QSLs) consisting of billions of entangled spins, thereby unifying quantum information and quantum matter. The excitations in QSLs are fractionalized and are strong candidates for topological quantum computing. The two main thrusts that will be investigated are: (1) the physical nature of non-local correlations imprinted by long range entanglement due to quantum statistics, interactions, and topological order; and (2) the real-time dynamics of fractionalized quasiparticles and how they create novel entanglement patterns in QSLs.By now quantum phase transitions (QPT) between non-topological phases such as the superfluid-Mott transition in the Bose Hubbard model are well understood. This research activity will focus on understanding the QPT in the Kitaev model on a honeycomb lattice between a gapped and gapless QSL driven by a magnetic field and between two topologically ordered gapped phases that harbor very different excitations as a function of exchange anisotropy. Topologically ordered phases harbor unusual fractionalized excitations, whose emergent exchange statistics, abelian and non-abelian, are richer than the standard bosons and fermions found in nature. The aim will be to make testable predictions for experimental probes by coupling an ancilla to the system and by using two-point correlated noise spectroscopy to probe quantum entanglement.The research will go hand in hand with an education and outreach program. A holistic course on quantum information meets quantum matter that integrates the standard material with simulations, experiments, and current day research will be developed. The PI is a founder of the Scientific Thinkers program for elementary schools whose motto is “Meet a scientist, Be a scientist, Think like a scientist”. By developing videos on experiments using easily available materials, the engagement of volunteers from Ohio State with the school children and teachers will be greatly enhanced. The PI will develop the Culture Change in Physics (CHIP) program by creating recordings of women in physics and by connecting with the National Society of Black Physicists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持一项将量子材料和量子信息交叉领域的理论和计算研究、教育和推广相结合的项目。量子材料和物质的主要目标之一是了解新型电子和原子组织是如何出现的。从表面上看,量子信息是一门非常不同的学科,它处理以量子位而不是经典位 0 和 1 编码的信息。该程序汇集了纠缠的想法。量子位之间的关系,探索它们在量子磁体中的存在,并阐明它们独特的性质。量子系统表现出经典系统所没有表现出的不寻常的性质,例如单个电子可以同时表现为粒子和波,这甚至更加令人难以置信和“奇怪”。对于两个电子或两个光子(光量子)而言,可观察到的性质是量子纠缠,如果两个电子以量子态的叠加形式产生,例如 (1up, 2down) + (1down, 2up) 其中 up 和 down 表示旋转电子的角动量方向 现在,当一个量子位发送给观察者 A,另一个量子位发送给 B,距离很远,因此它们无法相互通信时,会发生真正令人难以置信的事情:如果 A。检测到一个自旋向上的电子,B 必然会发现一个具有相反自旋的电子,只有当其中一个被观察到时,它们的精确自旋方向才会被揭示,此时另一个自旋也被精确确定。物理上距离很远最近,这种纠缠在相距超过 1200 公里的光子之间得到了惊人的证明。这种纠缠不仅发生在两个自旋之间,而且发生在磁性材料中存在的数十亿个自旋之间。物质的涌现状态被称为量子自旋液体。由于竞争的相互作用和晶格几何形状阻止自旋有序并形成磁体,可能会出现挫败感,看起来如果没有有序,一切都会丢失,但事实并非如此,纠缠汤对于创造是有用的!一种特殊的量子位,称为拓扑量子位,其中信息可以以非局域方式存储,并免受环境影响,从而扰乱其所包含的信息。该项目的目标是将量子纠缠和量子纠缠的理论基础放在一起。该研究活动将与教育和推广计划齐头并进。将开发一门关于量子信息与量子物质的整体课程,量子物质是模拟、实验和当前研究的标准材料。PI是科学的创始人小学思想者计划的座右铭是“认识科学家,成为科学家,像科学家一样思考”,通过使用容易获得的材料制作实验视频,俄亥俄州立大学的志愿者与学生和教师的互动将大大增强。 PI 将通过创建物理学界女性的记录并与国家黑人物理学家协会联系来开发物理学文化变革 (CHIP) 计划。技术摘要该奖项支持量子材料、量子物质及相关领域的理论和计算研究及教育现象。量子系统表现出不寻常的非经典特性,包括量子相干性、叠加性和干涉性,但最令人难以置信和“奇怪”的是量子纠缠主要使用光子进行了实验验证。由数十亿个纠缠自旋组成的量子自旋液体(QSL)中的多粒子纠缠前沿,从而统一了量子信息和量子物质。拓扑量子计算的两个主要研究方向是:(1)由于量子统计、相互作用和拓扑顺序而产生的长程纠缠的非局域相关性的物理性质;分段准粒子的实时动力学以及它们如何在 QSL 中创建新颖的纠缠模式。到目前为止,非拓扑相之间的量子相变 (QPT),例如 Bose Hubbard 中的超流体-莫特相变这项研究活动将重点了解由磁场驱动的有间隙和无间隙 QSL 之间以及两个拓扑有序的有间隙相之间的蜂窝晶格上的 Kitaev 模型中的 QPT,这两个相之间的激励非常不同。拓扑有序相具有不寻常的分段激发,其新兴交换统计(阿贝尔和非阿贝尔)比自然界中发现的标准玻色子和费米子更丰富。目标是通过将辅助装置与系统耦合并使用两点相关噪声光谱来探测量子纠缠,从而对实验探针进行可测试的预测。该研究将与量子教育和推广计划齐头并进。信息与量子物质相结合,将标准材料与模拟、实验和当今的研究相结合,PI 是小学科学思想家项目的创始人,其座右铭是“认识科学家,成为科学家,像科学家一样思考”。通过使用容易获得的材料进行实验的视频,PI 将通过制作女性发展过程中的录音来开发物理文化变革 (CHIP) 项目,从而大大增强俄亥俄州立大学志愿者与学生和教师的互动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of long-range entanglement in gapped quantum spin liquids by local measurements
通过局部测量检测带隙量子自旋液体中的长程纠缠
  • DOI:
    10.1103/physreva.106.042417
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Feng, Shi;He, Yanjun;Trivedi, Nandini
  • 通讯作者:
    Trivedi, Nandini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nandini Trivedi其他文献

Nandini Trivedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nandini Trivedi', 18)}}的其他基金

2022 Correlated Electron Electron Systems: Topology and Correlations: Long-Range Entanglement in Many-Body Systems
2022 相关电子电子系统:拓扑和相关性:多体系统中的长程纠缠
  • 批准号:
    2218821
  • 财政年份:
    2022
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Accelerated discovery of chalcogenides for enhanced functionality in magnetotransport, multiorbital superconductivity, and topological applications
DMREF:合作研究:加速发现硫属化物以增强磁输运、多轨道超导和拓扑应用的功能
  • 批准号:
    1629382
  • 财政年份:
    2016
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant
Quantum Monte Carlo Simulations of Quantum Criticality and Topological Phases
量子临界性和拓扑相的量子蒙特卡罗模拟
  • 批准号:
    1309461
  • 财政年份:
    2013
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Continuing Grant
Quantum Monte Carlo Simulations of Bose and Fermi Superfluids
玻色和费米超流体的量子蒙特卡罗模拟
  • 批准号:
    0907275
  • 财政年份:
    2009
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Standard Grant

相似国自然基金

融合拓扑相变分析的分解式模型诊断方法研究
  • 批准号:
    61872159
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
d-正则命题公式的可满足问题研究
  • 批准号:
    61762019
  • 批准年份:
    2017
  • 资助金额:
    43.0 万元
  • 项目类别:
    地区科学基金项目
居民对城市绿地的需求与满足程度及空间格局与动态变化:以北京市为例
  • 批准号:
    31670702
  • 批准年份:
    2016
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于SAT编码的最大团并行算法的设计、优化及其应用研究
  • 批准号:
    61602166
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
融合结构信息的MaxSAT求解诊断方法研究
  • 批准号:
    61672261
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2022
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2022
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2021
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2021
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2020
  • 资助金额:
    $ 54.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了