Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
基本信息
- 批准号:RGPIN-2020-07169
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatiotemporal mechanical substrates and force microscopy advances to quantify cell contractility and viscoelasticity. Over the past decades, the forces and mechanical properties of biological systems have been recognized as an essential component across all scales of life. In particular, advents in elastic cell culture substrates have catalyzed a renaissance of cell biology, unlocking a previously unrecognized dimension in biological sciences. Understanding the physical mechanisms driving biological processes is a key challenge of the 21st century, and will resolve biological systems through an entirely new perspective of forces and mechanics, however, materials and methods to quantify these interactions are essential. Central to the active properties of most eukaryotic cells is that they are contractile, continuously exerting dynamic forces that pull on neighboring cells and their substrate. By culturing cells on deformable substrates, researchers have employed Traction Force Microscopy (TFM) to characterize the stiffness-dependent contractility of cells and the influence this contractility has on diverse biological processes from differentiation and proliferation to cancer metastasis. Bottlenecks of substrate stability, porosity, throughput, and technical complexity nevertheless have hampered adoption of these essential metrics in broader life-science applications. My lab has produced mechanically tunable silicone substrates for high-throughput contractile force measurements in diverse physiological and pathological contexts, and NSERC DG support has been critical in these advances. This DG proposal is focused on extending this frontier by developing (1) new materials and methodologies to quantify cell mechanics, with the goal of applying these to (2) quantify cell viscoelasticity. To do so, we will create silicone-based cell substrates that are a) elastically patterned in space; b) elastically switchable in time; c) adhesively patterned to direct single and collective cell structure dimensionality; and d) hydrogel substrates that locally contract to stretch cells and probe their mechanical response. My lab will build on our expertise with TFM to both simplify and enhance quantification of real-time cell contractility and mechanical properties. We will selectively modify key intracellular and intercellular proteins and quantify their contributions to contractile forces and cellular viscoelasticity. This DG program is built on a firm foundation of my lab's expertise in silicone substrate mechanics and cell force measurements, and well-supported by extensive microscopy and mechanical-characterization instrumentation. My DG program will drive a materials-based quantification of cell contractility and viscoelasticity. Due to the broad and fundamental utility of the innovations proposed here, I anticipate far-reaching impact in biological physics, quantitative biology, materials science, and experimental medicine.
时空机械底物和迫使显微镜的前进以量化细胞收缩性和粘弹性。在过去的几十年中,生物系统的力和机械性能已被认为是所有范围的重要组成部分。特别是,弹性细胞培养底物的优势催化了细胞生物学的复兴,解锁了先前未识别的生物科学维度。了解驱动生物学过程的物理机制是21世纪的关键挑战,它将通过全新的力量和力学观点来解决生物系统,但是,量化这些相互作用的材料和方法至关重要。 大多数真核细胞的活性特性的核心是它们是收缩的,不断地施加动态力,这些动态力吸引了相邻细胞及其底物。通过在可变形底物上培养细胞,研究人员采用了牵引力显微镜(TFM)来表征细胞的僵硬依赖性收缩力,并且该收缩力对从分化和增殖到癌症转移的多种生物学过程产生了影响。但是,底物稳定性,孔隙率,吞吐量和技术复杂性的瓶颈仍阻碍了在更广泛的生活科学应用中对这些基本指标的采用。我的实验室已经在不同的生理和病理环境中生产了机械可调的有机硅底物,用于高通量收缩力测量,而NSERC DG支持在这些进展中至关重要。 该DG提案的重点是通过开发(1)新材料和方法来量化细胞力学,以将其应用于(2)量化细胞粘弹性,以扩展该领域。为此,我们将创建基于硅酮的细胞底物,该基材是a)在空间中弹性图案的; b)及时可弹性切换; c)具有粘附的图案化,以指导单一和集体的细胞结构维度; d)局部收缩以拉伸细胞和探测其机械响应的水凝胶底物。我的实验室将基于我们的TFM专业知识,以简化和增强实时细胞收缩性和机械性能的量化。我们将有选择地修改关键细胞内和细胞间蛋白,并量化它们对收缩力和细胞粘弹性的贡献。该DG程序建立在我实验室在硅胶底物力学和细胞力测量方面的专业知识的基础上,并通过广泛的显微镜和机械性特征仪器良好支持。我的DG程序将推动基于材料的细胞收缩性和粘弹性定量。由于这里提出的创新的广泛而基本的实用性,我预计对生物物理学,定量生物学,材料科学和实验医学的影响深远。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ehrlicher, Allen其他文献
Cell migration through small gaps
- DOI:
10.1007/s00249-006-0079-1 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:2
- 作者:
Brunner, Claudia A.;Ehrlicher, Allen;Goegler, Michael - 通讯作者:
Goegler, Michael
Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium
- DOI:
10.1073/pnas.0900451106 - 发表时间:
2009-11-24 - 期刊:
- 影响因子:11.1
- 作者:
Kikuchi, Norio;Ehrlicher, Allen;Rao, Madan - 通讯作者:
Rao, Madan
Optical neuronal guidance
- DOI:
10.1016/s0091-679x(07)83021-4 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:0
- 作者:
Ehrlicher, Allen;Betz, Timo;Kaes, Josef - 通讯作者:
Kaes, Josef
CELL MECHANICS Contracting to stiffness
- DOI:
10.1038/nmat2928 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:41.2
- 作者:
Ehrlicher, Allen;Hartwig, John H. - 通讯作者:
Hartwig, John H.
Pattern-Based Contractility Screening, a Reference-Free Alternative to Traction Force Microscopy Methodology
- DOI:
10.1021/acsami.1c02987 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:9.5
- 作者:
Ghagre, Ajinkya;Amini, Ali;Ehrlicher, Allen - 通讯作者:
Ehrlicher, Allen
Ehrlicher, Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ehrlicher, Allen', 18)}}的其他基金
Active Biological Mechanics
主动生物力学
- 批准号:
CRC-2017-00019 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
- 批准号:
RGPIN-2020-07169 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Active Biological Mechanics
主动生物力学
- 批准号:
CRC-2017-00019 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Active Biological Mechanics
主动生物力学
- 批准号:
1000231543-2017 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
- 批准号:
RGPIN-2020-07169 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Regulated dissipation in active mechanobiology
主动力学生物学中的调节耗散
- 批准号:
RGPIN-2014-05843 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Active Biological Mechanics
主动生物力学
- 批准号:
1000231543-2017 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Active Biological Mechanics
主动生物力学
- 批准号:
1000231543-2017 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Characterizing the mechanical properties and biological impact of implantable cartilage replacement gels
表征可植入软骨替代凝胶的机械性能和生物学影响
- 批准号:
531466-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Regulated dissipation in active mechanobiology
主动力学生物学中的调节耗散
- 批准号:
RGPIN-2014-05843 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
烧蚀型热防护材料表面热流辨识及其不确定度量化方法研究
- 批准号:12372207
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
非均质材料热力耦合建模方法与不确定量化分析
- 批准号:12271409
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
大尺寸轻量化复杂结构陶瓷增强复合材料激光增材制造方法
- 批准号:U22A20129
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
基于机器学习的碳纤维树脂基复合材料分层损伤定量化监测理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
轻量化酚醛热防护材料细观孔隙演化及自适应柔性缠绕控制理论与方法
- 批准号:52165059
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
- 批准号:
RGPIN-2020-07169 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Theoretical study of impurity-doped Mg2Si thermoelectric materials using first-principles calculations and machine learning technique
利用第一性原理计算和机器学习技术进行杂质掺杂Mg2Si热电材料的理论研究
- 批准号:
20K05681 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Materials and methods in quantifying cell mechanobiology
量化细胞力学生物学的材料和方法
- 批准号:
RGPIN-2020-07169 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantifying Horizontal Gene Transfer in the Human Gut Microbiome
量化人类肠道微生物组中的水平基因转移
- 批准号:
10246308 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Development of quantification methods of radiocesium-bearing materials by their properties and application to contaminated soils
开发含放射性铯材料的特性定量方法及其在污染土壤中的应用
- 批准号:
19H01145 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (A)