Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
基本信息
- 批准号:RGPIN-2020-05798
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology is accelerating, computing systems are becoming more powerful, and attackers are using sophisticated techniques and artificial intelligence. As a result, stronger security and cryptographic schemes with larger keys need to be implemented into smart devices and systems to protect sensitive data, computing systems, and network. The cryptographic systems are computationally complex and so their performance heavily relies on their efficient computations, specially in resource constrained embedded systems, such as smart cards, radio frequency identification tags, Internet of Things, and nodes in wireless sensor networks, where the power consumption, memory, and bandwidth are very limited. Efficient and reliable designs and implementations of cryptographic computations are challenging due to their complex nature. The main objective of this research is to propose novel computer arithmetic algorithms and architectures for cryptographic primitives and reliable security systems based on state of the art Advanced Encryption Standard (AES), the AES-GCM (Galois/counter mode) authenticated encryption, and Elliptic Curve Cryptography (ECC) as well as several submissions to the NIST lightweight cryptography standardization process. We are interested in devising the hardware implementations of such cryptographic systems for lightweight, low-power and high-speed target applications. We investigate the design of original algorithms and architectures for field arithmetic operations used in the AES, AES-GCM, and ECC cryptosystems. Choosing an appropriate field representation plays a critical role on the implementation performance of these cryptosystems. We consider different bases and representations to design the high-level and low-level arithmetic computations based on different design metrics. We investigate the effects of architectural design in terms of types of inputs and outputs (serial or parallel) and appropriate digit-level operations to find novel arithmetic algorithms/architectures with optimum digit sizes. Then, the optimum designs of the underlying arithmetic operations will be incorporated into the corresponding cryptosystems. Also, we design innovative reliable security systems to counteract natural faults and fault attacks. This research is very important for current and future technologies due to the increase in the density, clock frequency, and power dissipation per unit in very large scale integrated circuits. More importantly, fault attacks have become a serious concern in cryptography. This part of research will be based on adopting efficient concurrent error control coding approaches which has low overhead with acceptable error coverage. The outcome of this research leads to more secure and reliable cryptographic and security systems with lower cost and higher performance. It will also contribute to training highly qualified personnel for academia and Canadian industry.
技术正在加速,计算系统变得越来越强大,攻击者正在使用复杂的技术和人工智能。结果,需要将具有较大密钥的更强安全性和加密方案实施到智能设备和系统中,以保护敏感的数据,计算系统和网络。 加密系统在计算上是复杂的,因此其性能在很大程度上依赖于其有效的计算,特别是在资源约束的嵌入式系统中,例如智能卡,射频标识标签,物联网和无线传感器网络中的节点记忆和带宽非常有限。 由于其复杂的性质,加密计算的有效和可靠的设计和实施是具有挑战性的。这项研究的主要目的是提出新颖的计算机算法算法和加密原始的体系结构,以及基于最先进的高级加密标准(AES),AES-GCM(GALOIS/COUNTER模式)身份验证的加密和椭圆形的可靠安全系统和可靠的安全系统曲线密码学(ECC)以及NIST轻型加密标准化过程的几项提交。我们有兴趣设计此类加密系统的硬件实现,以实现轻质,低功率和高速目标应用程序。我们研究了AES,AES-GCM和ECC加密系统中使用的现场算术操作的原始算法和体系结构的设计。选择适当的现场表示形式在这些密码系统的实施性能中起着至关重要的作用。我们考虑不同的基础和表示,以设计基于不同设计指标的高级和低级算术计算。我们根据输入和输出类型(串行或并行)和适当的数字级操作研究建筑设计的影响,以找到具有最佳数字尺寸的新型算术算法/体系结构。然后,基础算术操作的最佳设计将纳入相应的加密系统。 此外,我们设计了创新的可靠安全系统来抵消自然故障和故障攻击。这项研究对于当前和未来的技术非常重要,因为在非常大的集成电路中,每单位的密度,时钟频率和功率耗散的增加。更重要的是,故障攻击已成为密码学的严重关注。研究的这一部分将基于采用有效的并发错误控制编码方法,该方法的开销较低,可接受的误差覆盖率。 这项研究的结果导致更安全,可靠的加密和安全系统的成本较低和性能更高。它还将为培训学术界和加拿大行业的高素质人员培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ReyhaniMasoleh, Arash其他文献
ReyhaniMasoleh, Arash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ReyhaniMasoleh, Arash', 18)}}的其他基金
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
志村簇的几何及其算术应用
- 批准号:12231001
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
相似海外基金
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Markoff Triples, Cryptography, and Arithmetic of Thin Groups
SaTC:核心:小:马可夫三元组、密码学和薄群算术
- 批准号:
2154624 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Ultra Low Power Computing for Next Generation Implantable Smart Cardiac Pacemakers
适用于下一代植入式智能心脏起搏器的超低功耗计算
- 批准号:
10091473 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别: