Integrated MEMS microneedles and microelectrode arrays for biomedical applications
用于生物医学应用的集成 MEMS 微针和微电极阵列
基本信息
- 批准号:RGPIN-2020-04542
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are many drawbacks to hypodermic needles, such as insertion pain, tissue trauma, and expertise needed to perform an injection. Microneedle arrays promise potentially painless extraction and infusion by penetrating only the upper part of the skin, avoiding the nerves. Hollow and solid microneedles are the two most common designs. Hollow microneedles work as their larger counterparts, with fluid flow through a tube piercing the skin. However they can suffer from clogging of the opening and have the potential to break. Solid microneedles are coated with a therapeutic agent, allowing drug molecules to dissolve into the surrounding tissue. The dosage depends on the microneedle area and therefore the yield is limited. This work will investigate new hollow microneedle designs and materials to overcome clogging issues and improve robustness.. To overcome the solid microneedle yield issue, new designs will be explored, such as the creation of microfluidic channels next to the base of the solid microneedles, to enable delivery of relevant amounts of drugs through the pierced tissue. Microfabrication methods are ideal to create microneedle arrays, as the materials are biocompatible, robust and designed for large-scale integration with other micro manufacturing processes. Integrating microneedles with suitable micropumping methods will enable a compact drug delivery or fluid extraction system to be developed. Physiological fluids such as blood contain many bio particles and pose difficulties as they can clog microfluidic systems and shear forces from mechanical pumping methods can damage cells. To tackle these challenges, non-mechanical micropumping methods known as electrokinetic micropumping will be investigated. Fluid is moved via electric fields and thus there are no moving parts, like a valve or membrane, for particles to adhere to or be damaged by. Electrokinetic systems are also inherently easier to control via digital electronics, making them ideal for integration with a microcontroller, enabling precise control of fluid flow in the microneedle system. This research will move from the bench to the bedside, by integrating microneedles and micropumps to create a microneedle system that can be used without direct medical intervention. We will achieve this by focusing on three specific aims: 1) Development of new hollow and solid microneedles 2) Development of electrokinetic micropumps 3) Creation of integrated microneedle systems. The diverse HQP supported by this work will learn cutting-edge microfabrication and simulation techniques. They will validate their ideas by designing, fabricating and testing microneedle systems. As with past HQP, this program will prepare them for future employment in the biomedical industry and academia. This research will lead to new technologies for drug delivery, improving quality of life for patients and benefitting the economy through reducing healthcare expenditures.
皮下注射针的缺点,例如插入疼痛,组织创伤以及进行注射所需的专业知识。微针阵列有望通过仅穿透皮肤的上部,避免神经,有可能无痛的提取和输注。空心和实心微针是最常见的两个设计。空心的微针作为较大的对应物的工作,流体流过管,刺穿了皮肤。但是,他们可能会遭受开口堵塞的困扰,并有可能破裂。固体微针涂有治疗剂,使药物分子溶于周围的组织。剂量取决于微针面积,因此产量受到限制。 这项工作将调查新的空心微针设计和材料,以克服堵塞问题并改善鲁棒性。为了克服固体微针产量问题,将探索新的设计,例如建立在固体微乳腺基础附近的微流体通道,以通过刺穿的药物提供相关的药物量。 微加工方法是创建微针阵列的理想选择,因为这些材料具有生物相容性,可靠且设计用于与其他微型制造工艺进行大规模集成。使用合适的微型倾斜方法整合微对基团将使紧凑的药物输送或流体提取系统得以开发。 生理流体(如血液)含有许多生物颗粒和构成困难,因为它们可以堵塞微流体系统和机械泵送方法中的剪切力会损害细胞。为了应对这些挑战,将研究称为电动微倾斜的非机械微倾斜方法。流体是通过电场移动的,因此没有运动部件,例如阀门或膜,可以粘附或损坏颗粒。电动系统也可以固有地易于通过数字电子设备控制,从而使其非常适合与微控制器集成,从而可以精确控制微孔系统中的流体流动。这项研究将通过集成微对胶和微型聚会来创建可在没有直接医疗干预的情况下使用的微针系统,从而从长凳转移到床边。我们将通过关注三个特定目标来实现这一目标:1)开发新的空心和固体微孔系2)电动微型聚会的开发3)创建集成的微针系统。这项工作支持的多样化的HQP将学习尖端的微型制造和仿真技术。他们将通过设计,制造和测试微针系统来验证自己的想法。与过去的HQP一样,该计划将为他们准备在生物医学行业和学术界的未来就业做好准备。这项研究将导致用于药物输送的新技术,改善患者的生活质量,并通过减少医疗支出使经济受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dalton, Colin其他文献
Effect of planar microelectrode geometry on neuron stimulation: Finite element modeling and experimental validation of the efficient electrode shape
- DOI:
10.1016/j.jneumeth.2015.03.024 - 发表时间:
2015-06-15 - 期刊:
- 影响因子:3
- 作者:
Ghazavi, Atefeh;Westwick, David;Dalton, Colin - 通讯作者:
Dalton, Colin
AC Electrothermal Effect in Microfluidics: A Review
- DOI:
10.3390/mi10110762 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:3.4
- 作者:
Salari, Alinaghi;Navi, Maryam;Dalton, Colin - 通讯作者:
Dalton, Colin
Continuous dielectrophoretic cell separation microfluidic device
- DOI:
10.1039/b613344d - 发表时间:
2007-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Li, Youlan;Dalton, Colin;Kaler, Karan V. I. S. - 通讯作者:
Kaler, Karan V. I. S.
Design and fabrication of MEMS-based microneedle arrays for medical applications
- DOI:
10.1007/s00542-009-0883-5 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Zhang, Peiyu;Dalton, Colin;Jullien, Graham A. - 通讯作者:
Jullien, Graham A.
A cost effective, re-configurable electrokinetic microfluidic chip platform
- DOI:
10.1016/j.snb.2006.08.036 - 发表时间:
2007-04-10 - 期刊:
- 影响因子:8.4
- 作者:
Dalton, Colin;Kaler, Karan V. I. S. - 通讯作者:
Kaler, Karan V. I. S.
Dalton, Colin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dalton, Colin', 18)}}的其他基金
Integrated MEMS microneedles and microelectrode arrays for biomedical applications
用于生物医学应用的集成 MEMS 微针和微电极阵列
- 批准号:
RGPIN-2020-04542 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Rapid fabrication of highly customizable solid microneedle arrays
快速制造高度可定制的实心微针阵列
- 批准号:
RTI-2022-00028 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Research Tools and Instruments
Fabrication of Medical Cannula for advanced extracorporeal life support devices.
制造用于先进体外生命支持设备的医用插管。
- 批准号:
566795-2021 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Integrated MEMS microneedles and microelectrode arrays for biomedical applications
用于生物医学应用的集成 MEMS 微针和微电极阵列
- 批准号:
RGPIN-2020-04542 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Investigating reproducible plastisol cannula fabrication
研究可重复的塑料溶胶插管制造
- 批准号:
530500-2018 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Non-mechanical continuous flow micropumps for biomedical applications
用于生物医学应用的非机械连续流微型泵
- 批准号:
386864-2012 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Investigating reproducible and reliable electrode fabrication for water quality testing
研究用于水质测试的可重复且可靠的电极制造
- 批准号:
513887-2017 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Non-mechanical continuous flow micropumps for biomedical applications
用于生物医学应用的非机械连续流微型泵
- 批准号:
386864-2012 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Non-mechanical continuous flow micropumps for biomedical applications
用于生物医学应用的非机械连续流微型泵
- 批准号:
386864-2012 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Non-mechanical continuous flow micropumps for biomedical applications
用于生物医学应用的非机械连续流微型泵
- 批准号:
386864-2012 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于金纳米簇和MEMS微针贴片的无痛响应型血糖调节体系研究
- 批准号:81871484
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于MEMS技术的载药聚合物微针经皮给药系统研究
- 批准号:60976081
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
基于MEMS微针电极的生物电阻增敏测量方法的研究
- 批准号:60701001
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于聚合物MEMS微针与微流体技术的集成微系统研究
- 批准号:50775149
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
面向透皮给药的钛基MEMS微针阵列及其与微流体网络单片集成技术的基础研究
- 批准号:60706029
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
高速MEMSシャッターの創製とそれを用いた量子干渉効果の長期安定性の向上
高速MEMS快门的创建以及利用它提高量子干涉效应的长期稳定性
- 批准号:
24K07615 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
圧電/磁性体薄膜の融合による広帯域MEMS振動発電素子
压电/磁性薄膜融合宽带MEMS振动发电装置
- 批准号:
23K20252 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
2+1マスMEMS共振子による新たなモード制御法の研究と高性能センサーへの適用
2+1质量MEMS谐振器新型模式控制方法研究及其在高性能传感器中的应用
- 批准号:
23K23192 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)