Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
基本信息
- 批准号:RGPIN-2020-04337
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outer and less strongly bound electrons of matter are responsible for most material properties including color, chemical bonding, atomic and electronic structure, magnetism, band gap, electrical and heat conductivity, and even super-conductivity. Having the means to measure, model, and understand the outer electrons of a material is the key to understanding and tailoring important physical properties. This research will employ synchrotron-based soft X-ray spectroscopy at the group's own endstation at the Canadian Light Source to answer key questions concerning the structure of new materials in three areas of focus: 1. The role of vacancies in spinelectronic and other materials for new storage devices and high performance computing: Vacancies are important in condensed matter physics but notoriously difficult to detect. We have pioneered a method that allows studying vacancies. We specifically study their role in new ferromagnetic semiconductors for applications that use the electron spin and charge to store information. If realized on a large scale, spintronics will revolutionize computing capabilities by allowing faster processing speed, higher storage density and less energy consumption. 2. New materials for LED lighting applications: We focus on the detailed characterization and development of the electronic structures of a series of next-generation, rare earth-doped, nitride phosphors. These narrow-band-emitting, high-efficiency phosphors have demonstrated outstanding potential for use in phosphor-converted light emitting diodes (pc-LEDs), a technology poised to replace traditional incandescent lights. They are expected to lead to an outstanding reduction of 15% in global energy consumption with substantially greater long-term reductions. This reduction in energy consumption will be driven by the development of new high-efficiency phosphors. 3. Low dimensional materials: The first goal of this project is to elucidate basic physical and electronic properties of one dimensional, linear carbon chains, as well as how the choice of substrate, carbon chain length and introduction of dopants affects the electronic properties. In the extension to two-dimensional materials, we will study single layered materials phosphorene and borophene in an attempt to establish freestanding monolayers that have unique properties in terms of strength and charge mobility that are of fundamental interest and applicable in many areas. Overall, the comparison of our synchrotron measurements with our state-of-the-art theoretical calculations will provide very detailed insight and facilitate the design of new materials with tailored electronic, optical, magnetic, and chemical properties for use in lighting applications with much less energy consumption and electronics applications for faster and more energy efficient computing allowing handling of larger data sets.
物质的外部和较不限制的电子负责大多数材料特性,包括颜色,化学键合,原子和电子结构,磁性,带隙,电导率和热电导率,甚至超导性。拥有测量,建模和理解材料的外电子的手段是理解和调整重要物理特性的关键。这项研究将采用基于同步加速器的软X射线光谱在该集团自己的终端站点在加拿大光源,以回答有关三个重点领域新材料结构的关键问题:1。空缺在SpinelectRonic和其他材料中的作用新的存储设备和高性能计算:空缺在冷凝物理物理学中很重要,但众所周知难以检测。我们开创了一种允许研究空缺的方法。我们专门研究了它们在新的铁磁半导体中的作用,用于使用电子自旋和电荷存储信息的应用。如果大规模实现,SpinTronics将通过允许更快的处理速度,更高的存储密度和更少的能源消耗来彻底改变计算功能。 2。用于LED照明应用的新材料:我们专注于一系列下一代,稀有土掺杂的氮化物磷的电子结构的详细表征和开发。这些窄带发射高效的磷光剂显示出在磷光灯转化的发光二极管(PC-LEDS)中使用的出色潜力,这是一项有准备替代传统白炽灯的技术。预计它们将导致全球能源消耗的15%降低,而长期降低则大大减少。能源消耗的减少将由新的高效磷酸盐的发展驱动。 3。低维材料:该项目的第一个目标是阐明一个维,线性碳链的基本物理和电子特性,以及底物,碳链长度和掺杂剂的介绍如何影响电子特性。在扩展到二维材料的过程中,我们将研究单层磷磷酸烯和硼苯,以试图建立在强度和电荷迁移率方面具有独特特性的独立单层,这些单层具有基本利益,并且在许多领域都适用。总体而言,我们的同步子测量值与最先进的理论计算的比较将提供非常详细的见解,并促进具有量身定制的电子,光学,磁性和化学特性的新材料的设计,用于在照明应用中使用,少得多。能源消耗和电子应用程序,用于更快,更节能的计算,允许处理较大的数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moewes, Alexander其他文献
Band Gap Tuning in Poly(triazine imide), a Nonmetallic Photocatalyst
- DOI:
10.1021/jp4002059 - 发表时间:
2013-05-02 - 期刊:
- 影响因子:3.7
- 作者:
McDermott, Eamon J.;Wirnhier, Eva;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure
- DOI:
10.1039/c6cp02096h - 发表时间:
2016-06-21 - 期刊:
- 影响因子:3.3
- 作者:
Tolhurst, Thomas M.;Leedahl, Brett;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends
将 HOMO-LUMO 间隙与 P3HT/PCBM 共混物中的扭转无序联系起来
- DOI:
10.1063/1.4936898 - 发表时间:
2015-12-14 - 期刊:
- 影响因子:4.4
- 作者:
McLeod, John A.;Pitman, Amy L.;Moewes, Alexander - 通讯作者:
Moewes, Alexander
CSD 2210954: Experimental Crystal Structure Determination
- DOI:
10.25505/fiz.icsd.cc2d6p3f - 发表时间:
2023-01-01 - 期刊:
- 影响因子:0
- 作者:
De Boer, Tristan;Somers, Cody;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Electronic structure investigation of wide band gap semiconductors-Mg2PN3and Zn2PN3: experiment and theory
- DOI:
10.1088/1361-648x/ab8f8a - 发表时间:
2020-09-23 - 期刊:
- 影响因子:2.7
- 作者:
Al Fattah, Md Fahim;Amin, Muhammad Ruhul;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Moewes, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moewes, Alexander', 18)}}的其他基金
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Materials Science With Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Materials Science using Synchrotron Radiation
使用同步辐射的材料科学
- 批准号:
1000225504-2011 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Novel first-principles methods for studying thermoelastic properties of materials
研究材料热弹性特性的新第一性原理方法
- 批准号:
2036176 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Continuing Grant
Studying the dispersion of graphene for novel nanocomposite materials
研究石墨烯在新型纳米复合材料中的分散性
- 批准号:
560690-2020 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Alliance Grants
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Studying Mechanotransduction in Late Embryonic Development to Inform Tendon Tissue Engineering
研究胚胎发育晚期的力转导为肌腱组织工程提供信息
- 批准号:
9808374 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别: