Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
基本信息
- 批准号:RGPIN-2015-05498
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outer and less strongly bound electrons of matter are responsible for most material properties including color, chemical-bonding capacity, hardness, magnetism, band gap, electronic structure, and catalytic activity to electrical and heat conductivity and even super-conductivity. Having the means to measure, model, and understand the outer electrons of a material gives us the key to understanding and tailoring important physical properties. This research will employ soft X-ray spectroscopy with synchrotron radiation to answer key questions concerning the structure of new materials in 3 areas of focus:***1. Ultra-hard materials for LED lighting applications: Hardness is inherently difficult to measure and therefore theoretical models can help to design materials that are harder than diamond (the hardest material known). We will further refine our model that relates the hardness of a material and its band gap, we will test the model experimentally with the goal to apply these materials in LED lighting applications. ******2. Spinelectronic materials for new storage devices and high performance computing:***We will find new suitable ferromagnetic semiconductors for applications that use the electron spin and charge to store information. If realized on a large scale, spintronics will revolutionize computing capabilities by allowing faster processing speed and higher storage density.******3. Two dimensional (2D) materials: The growth of graphene - a 2D single isolated plane of graphite - and its integration in current silicon-based nanotechnology is facing several challenges, one having no band gap which is needed for semiconductor device applications. A 2D semiconductor would be extremely desirable for nanoscale device applications as well as supercapacitors and photovoltaic devices. Our work aims to: i) alter the properties of graphene to create a band gap and ii) develop another 2D semiconducting material such as the graphene analogue "silicene", in which the carbon atoms are replaced by silicon. Band structure and band gap are predicted to depend on the number of stacked layers, stacking sequence, and electric fields across the graphite layers. Other important questions include identification of a suitable substrate on which silicene could maintain a band gap or the correct layer structure.******Overall, the comparison of synchrotron measurements with state-of-the-art calculations will provide very detailed insight and facilitate the design of new materials with tailored electronic, optical, magnetic, and chemical properties for use in industrial, medical and electronic contexts.**
物质的外部和较不限制的电子负责大多数材料特性,包括颜色,化学构成能力,硬度,磁性,带隙,电子结构以及催化活性,以及对电导率和热电导率的催化活性。拥有测量,建模和理解材料的外电子的方法为我们提供了理解和调整重要物理特性的关键。这项研究将采用同步辐射的软X射线光谱,以回答有关在3个重点区域中新材料结构的关键问题:*** 1。 LED照明应用的超硬材料:硬度本质上难以测量,因此理论模型可以帮助设计比钻石(已知最难的材料)更难的材料。我们将进一步完善与材料硬度及其带隙的硬度相关的模型,我们将通过实验测试模型,以将这些材料应用于LED照明应用中的目标进行测试。 ****** 2。用于新的存储设备和高性能计算的脊柱上的材料:***我们将找到新的合适的铁磁半导体,用于使用电子旋转和充电来存储信息的应用。如果大规模实现,SpinTronics将通过允许更快的处理速度和更高的存储密度来彻底改变计算功能。****** 3。二维(2D)材料:石墨烯的生长 - 石墨的2D单隔离平面 - 其在当前基于硅的纳米技术中的集成正面临着几个挑战,一种没有带有半导体设备应用所需的带隙。对于纳米级设备的应用以及超级电容器和光伏设备,2D半导体将是极为理想的。我们的工作旨在:i)改变石墨烯的特性以创建带隙,ii)开发另一种2D半导体材料,例如石墨烯类似物“硅”,其中碳原子被硅代替。预计频带结构和带隙取决于整个石墨层的堆叠层,堆叠序列和电场的数量。其他重要问题包括识别硅可以维持带隙或正确层结构的合适基材。并促进具有量身定制的电子,光学,磁性和化学特性的新材料的设计,以在工业,医学和电子环境中使用。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moewes, Alexander其他文献
Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure
- DOI:
10.1039/c6cp02096h - 发表时间:
2016-06-21 - 期刊:
- 影响因子:3.3
- 作者:
Tolhurst, Thomas M.;Leedahl, Brett;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends
将 HOMO-LUMO 间隙与 P3HT/PCBM 共混物中的扭转无序联系起来
- DOI:
10.1063/1.4936898 - 发表时间:
2015-12-14 - 期刊:
- 影响因子:4.4
- 作者:
McLeod, John A.;Pitman, Amy L.;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Band Gap Tuning in Poly(triazine imide), a Nonmetallic Photocatalyst
- DOI:
10.1021/jp4002059 - 发表时间:
2013-05-02 - 期刊:
- 影响因子:3.7
- 作者:
McDermott, Eamon J.;Wirnhier, Eva;Moewes, Alexander - 通讯作者:
Moewes, Alexander
CSD 2210954: Experimental Crystal Structure Determination
- DOI:
10.25505/fiz.icsd.cc2d6p3f - 发表时间:
2023-01-01 - 期刊:
- 影响因子:0
- 作者:
De Boer, Tristan;Somers, Cody;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Electronic structure investigation of wide band gap semiconductors-Mg2PN3and Zn2PN3: experiment and theory
- DOI:
10.1088/1361-648x/ab8f8a - 发表时间:
2020-09-23 - 期刊:
- 影响因子:2.7
- 作者:
Al Fattah, Md Fahim;Amin, Muhammad Ruhul;Moewes, Alexander - 通讯作者:
Moewes, Alexander
Moewes, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moewes, Alexander', 18)}}的其他基金
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Materials Science With Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Materials Science using Synchrotron Radiation
使用同步辐射的材料科学
- 批准号:
1000225504-2011 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Materials Science with Synchrotron Radiation
同步辐射材料科学
- 批准号:
CRC-2018-00014 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
不确定性与核心技术差距双重约束下内需变动对外贸稳定性与韧性的影响研究
- 批准号:72373035
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
乙肝病毒核心蛋白通过抑制Rab-GAP诱导肝细胞损伤的分子机制研究
- 批准号:82372233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PKC调控GAP-43参与A型肉毒毒素治疗后神经肌肉接头重建机制研究
- 批准号:82372563
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
超快热刺激下GAP/CL-20推进剂瞬态响应演变规律与机理研究
- 批准号:52306161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字经济、人力资本结构和收入差距:基于企业薪酬调查数据的影响和机制分析
- 批准号:72303041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
- 批准号:
EP/X039285/1 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Research Grant
Development of Ag-based Wide Band Gap Semiconductors for Opto-electronic Applications
开发用于光电应用的银基宽带隙半导体
- 批准号:
574165-2022 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
University Undergraduate Student Research Awards
Novel Ultra-high Polarity and High-frequency Axial Flux Electric Machines and Wide Band Gap Power Electronic Drives
新型超高极性高频轴向磁通电机和宽带隙电力电子驱动器
- 批准号:
1809876 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Band gap and electronic structure of 2D-systems, spinelectronics and ultra-hard materials studied with synchrotron-based soft X-ray Spectroscopy and Density Functional Theory
使用基于同步加速器的软 X 射线光谱和密度泛函理论研究二维系统、自旋电子学和超硬材料的带隙和电子结构
- 批准号:
RGPIN-2015-05498 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual