Dopant-Based Scalable Platform in Silicon for Quantum Information Processing

用于量子信息处理的基于掺杂剂的可扩展硅平台

基本信息

  • 批准号:
    RGPIN-2020-05738
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Following the digital revolution, everyone is now massively using silicon transistors provided by microelectronics industry: They are the basic element not only of supercomputers, but of all electronic devices that have invaded every aspect of our modern lives (cell phones, PCs, GPS, cars, TV, internet router, .). This revolution of our modern society has brought increased comfort and allowed progress in science. Improvement of computer chips has been driven by reducing the size of the transistors, but this scaling has now reached a limit where both sensitivity to the exact position of single dopant atoms and quantum effects present major obstacles to further downscaling, calling for the exploration of highly innovative and disruptive approaches to further the development of computing in silicon. Several academic and major industrial players (as Intel) explore ultrascaled transistors at low temperature for quantum computation: The transistor channel then behaves as a quantum dot confining a single electron whose spin (instead of charge) is used to encode quantum information. Yet, the electron spin-coherence time is limited, allowing only for a very limited number of operations before the system decoheres, and the devices are still prone to dopant variability, preventing scalable architecture to emerge. In this discovery grant (DG) we instead consider nuclear spins of dopants, naturally present in transistors, to encode the quantum information. They have already demonstrated record coherence times, several orders of magnitude larger than the ones of electron spins in quantum dots. We will first address the key challenge for operating nuclear spin qubits: addressability. This DG will turn the strong sensitivity of ultrascaled transistor to individual dopants into an advantage. The small size of ultrascaled transistors will here be a key advantage by providing a means to focus electric and magnetic fields onto the well isolated nuclear spin. We will focus our research on dopants with high nuclear spin which provide the necessary redundancy to encode error-corrected logical qubits and allow for electrical manipulation of the spin, an essential asset to scalability. We will then develop coupling schemes between two nuclear spins located in distant transistors by using a lossless superconducting resonators, mediating the interaction between two nuclear spins via an electron spin. This DG will provide a way forward for the classical electronics industry by bringing it to use for future quantum computers. Our research will provide the building blocks of a quantum processor: Excellent quantum bits formed by the nuclear spin of a dopant located in the transistor channel. We expect our device to show unprecedented capabilities, such as built-in error correction, long coherence and scalability. This DG has the potential to provide Canada with disruptive devices for the microelectronic industry as well as a cutting edge in the race of quantum computation.
随着数字革命的到来,每个人都在大量使用微电子工业提供的硅晶体管:它们不仅是超级计算机的基本元件,而且是侵入我们现代生活各个方面的所有电子设备(手机、个人电脑、GPS、汽车)的基本元件。 、电视、互联网路由器、.)。现代社会的这场革命带来了更多的舒适感并促进了科学的进步。计算机芯片的改进是通过减小晶体管的尺寸来推动的,但是这种缩放现在已经达到了极限,对单个掺杂剂原子的精确位置的敏感性和量子效应都成为进一步缩小尺寸的主要障碍,需要探索高度进一步发展硅计算的创新和颠覆性方法。一些学术界和主要工业企业(如英特尔)在低温下探索超大规模晶体管以进行量子计算:然后,晶体管通道充当限制单个电子的量子点,该电子的自旋(而不是电荷)用于编码量子信息。然而,电子自旋相干时间是有限的,在系统退相干之前只允许进行非常有限的操作,并且器件仍然容易出现掺杂剂变化,从而阻碍了可扩展架构的出现。在这项发现资助(DG)中,我们转而考虑晶体管中自然存在的掺杂剂的核自旋来编码量子信息。他们已经证明了创纪录的相干时间,比量子点中电子自旋的相干时间大几个数量级。我们将首先解决操作核自旋量子位的关键挑战:可寻址性。该 DG 会将超大规模晶体管对单个掺杂剂的强烈敏感性转化为优势。超大规模晶体管的小尺寸将成为一个关键优势,因为它提供了一种将电场和磁场聚焦到隔离良好的核自旋上的方法。 我们将把研究重点放在具有高核自旋的掺杂剂上,这些掺杂剂为编码纠错逻辑量子位提供必要的冗余,并允许对自旋进行电操纵,这是可扩展性的重要资产。然后,我们将使用无损超导谐振器开发位于遥远晶体管中的两个核自旋之间的耦合方案,通过电子自旋介导两个核自旋之间的相互作用。 该 DG 将通过将其用于未来的量子计算机,为经典电子行业提供一条前进之路。我们的研究将提供量子处理器的构建模块:由位于晶体管通道中的掺杂剂的核自旋形成的优秀量子比特。我们期望我们的设备能够展现前所未有的功能,例如内置纠错、长一致性和可扩展性。该 DG 有潜力为加拿大提供微电子行业的颠覆性设备以及量子计算竞赛的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DupontFerrier, Eva其他文献

DupontFerrier, Eva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DupontFerrier, Eva', 18)}}的其他基金

Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    DGECR-2020-00217
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于可扩展功能单元的液晶软驱动机械超材料研究
  • 批准号:
    52373173
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
  • 批准号:
    2151406
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了