Levy processes and their applications

征收流程及其应用

基本信息

  • 批准号:
    RGPIN-2019-06320
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Imagine a particle that travels along the line in the following way: At each moment of time the particle decides randomly (and independently of the past) whether to jump to the left or to the right. Mathematicians would call this simple model a "discrete time random walk". A natural generalisation of this model to continuous time would be called a "one-dimensional Levy process". The rich class Levy of processes occupies the central stage in much of the theory of stochastic processes. Levy processes are indispensable in the study of fine properties of many important objects in pure probability, such as branching processes, random trees, fragmentation processes and self-similar Markov processes. They are also all-important in many applied probability models, in particular in such areas as queuing theory and optimal control, mathematical finance and actuarial mathematics. Levy processes have been studied from 1940s, with periods of heightened interest in 1960s- early 1970s and after late 1990s. However, there are still many important unresolved problems in this area. One of these problems concerns investigating how a stable process process exits from an interval (a stable process is the only Levy process that is self-similar: its law is preserved under a simultaneous scaling of time and space). Making any progress in this area would be an important achievement and would lead to advances in many areas where stable processes are applied. I intend to use recent results on Wiener-Hopf factorization for matrices to study this problem using a mix of complex-analytical and probabilistic methods. Another area of intense current activity is the study of Generalized Gamma Convolutions (GGC) -- a very useful class of distributions that has a lot of analytical structure and that includes many distributions used in applications (lognormal, Weibull, Pareto, etc.). Here I plan to focus on developing numerical methods  for working with this class of distributions, in particular, methods for computing and approximating Laplace transforms of these random variables. I also plan to investigate multi-dimensional generalisations of the GGC class and to study dependence structures and copulas that arise in this way and apply them in Actuarial Science and Mathematical Finance. The third direction of my future research will be about approximating arbitrary Levy processes by simpler, but more computationally efficient processes. I will consider processes with jumps of rational transform (these are the easiest processes for computational purposes) and will develop algorithms for approximating any Levy process by these ones. I believe that this work will be useful for all practitioners and applied mathematicians who are using Levy processes for modelling purposes.
想象一个粒子以以下方式沿着这条线行进:在每个时刻,粒子随机地(并且与过去无关)决定是向左还是向右跳跃,数学家将这个简单的模型称为“离散时间”。该模型对连续时间的自然推广将被称为“一维 Levy 过程”。Levy 过程的丰富类别在许多随机过程理论中占据着中心地位。在研究纯概率中许多重要对象的精细属性时,例如分支过程、随机树、碎片过程和自相似马尔可夫过程,它们在许多应用概率模型中也非常重要,特别是在排队等领域。理论和最优控制、数学金融和精算数学从 20 世纪 40 年代开始被研究,在 20 世纪 60 年代至 1970 年代初以及 90 年代末之后出现了氮兴趣。该领域仍有许多重要的未解决问题,其中一个问题涉及研究稳定过程过程如何从区间退出(稳定过程是唯一自相似的 Levy 过程:它的定律在时间和时间的同时缩放下保持不变。在这个领域取得的任何进展都将是一项重要的成就,并将导致应用稳定过程的许多领域的进步,我打算使用矩阵维纳霍普夫分解的最新结果来研究这个问题。 - 分析和概率当前活跃的另一个领域是广义伽玛卷积(GGC)的研究——一类非常有用的分布,它具有大量的分析结构,并且包括应用中使用的许多分布(对数正态分布、威布尔分布、帕累托分布、等)。在这里,我计划重点开发处理此类分布的数值方法,特别是计算和近似这些随机变量的拉普拉斯变换的方法。我未来研究的第三个方向是通过更简单但计算效率更高的过程来近似任意 Levy 过程。具有有理变换跳跃的过程(这些是用于计算目的的最简单的过程),并将开发通过这些过程近似任何 Levy 过程的算法,我相信这项工作将对所有从业者和应用数学家有用。使用 Levy 流程进行建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuznetsov, Alexey其他文献

EXISTENCE OF LIMIT CYCLES IN THE REPRESSILATOR EQUATIONS
Surface Potential Decay of Corona Charged Polyethylene Films: Influence of Deep Surface Traps
Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis
  • DOI:
    10.1007/s00419-010-0492-x
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kuznetsov, Alexey;Mammadov, Musa;Hajilarov, Eldar
  • 通讯作者:
    Hajilarov, Eldar
Optimization of a quarter-car suspension model coupled with the driver biomechanical effects
  • DOI:
    10.1016/j.jsv.2010.12.027
  • 发表时间:
    2011-06-06
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kuznetsov, Alexey;Mammadov, Musa;Hajilarov, Eldar
  • 通讯作者:
    Hajilarov, Eldar
Tail dependence of the Gaussian copula revisited
  • DOI:
    10.1016/j.insmatheco.2016.04.009
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Furman, Edward;Kuznetsov, Alexey;Zitikis, Ricardas
  • 通讯作者:
    Zitikis, Ricardas

Kuznetsov, Alexey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuznetsov, Alexey', 18)}}的其他基金

Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exit problems for Levy processes
Levy 进程的退出问题
  • 批准号:
    341233-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Solvable models in option pricing and credit risk
期权定价和信用风险的可解模型
  • 批准号:
    341233-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于深度解耦表征学习的流程工业质量预报与可解释性研究
  • 批准号:
    62303146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钢铁制造流程铁素物质流与碳氧能量流的网络耦合机理及协同调控方法
  • 批准号:
    52334008
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
考虑碳排影响的全流程碳足迹表征与资源配置优化方法研究
  • 批准号:
    62303186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属矿开采全流程碳足迹分析与测算建模方法
  • 批准号:
    52374113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
双高产业全流程多层级“能-碳-污”协同演化及解耦原理
  • 批准号:
    52330003
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and their applications
征收流程及其应用
  • 批准号:
    RGPIN-2019-06320
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Limit theorems for diffusions, Levy processes and their variants with their applications
扩散、Levy 过程及其变体的极限定理及其应用
  • 批准号:
    19H01791
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cylindrical Levy Processes and Their Applications
圆柱征税流程及其应用
  • 批准号:
    EP/I036990/1
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了