Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
基本信息
- 批准号:RGPIN-2016-05983
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
collocation methods; domain decomposition methods; fractional differential equations; partial differential equations; spectral methods
搭配方法;域分解方法;分数微分方程;部分微分方程;光谱方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lui, ShiuHong(Shaun)其他文献
Lui, ShiuHong(Shaun)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lui, ShiuHong(Shaun)', 18)}}的其他基金
Space-time Spectral Methods for Differential equations
微分方程的时空谱方法
- 批准号:
RGPIN-2022-03665 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
- 批准号:42376190
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
- 批准号:52374055
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
- 批准号:52309135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
- 批准号:12301469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Transfer operator methods for modelling high-frequency wave fields - advancements through modern functional and numerical analysis
用于模拟高频波场的传递算子方法 - 现代函数和数值分析的进步
- 批准号:
EP/R012008/1 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual