Modern numerical methods for partial differential equations

偏微分方程的现代数值方法

基本信息

  • 批准号:
    RGPIN-2016-05983
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

collocation methods; domain decomposition methods; fractional differential equations; partial differential equations; spectral methods
搭配方法;域分解方法;分数微分方程;部分微分方程;光谱方法

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lui, ShiuHong(Shaun)其他文献

Lui, ShiuHong(Shaun)的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lui, ShiuHong(Shaun)', 18)}}的其他基金

Space-time Spectral Methods for Differential equations
微分方程的时空谱方法
  • 批准号:
    RGPIN-2022-03665
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
  • 批准号:
    250303-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
  • 批准号:
    250303-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
  • 批准号:
    250303-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
  • 批准号:
    250303-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
双区域自然对流耦合模型的高效数值方法研究
  • 批准号:
    12361077
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
  • 批准号:
    52374055
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
  • 批准号:
    52309135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
  • 批准号:
    12301469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
  • 批准号:
    2208438
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Transfer operator methods for modelling high-frequency wave fields - advancements through modern functional and numerical analysis
用于模拟高频波场的传递算子方法 - 现代函数和数值分析的进步
  • 批准号:
    EP/R012008/1
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
  • 批准号:
    RGPIN-2016-05983
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了