Efficient and reliable coded distributed computing

高效可靠的编码分布式计算

基本信息

  • 批准号:
    570977-2021
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Many modern ICT applications work with data at scale and demand massive computations that cannot be performed in a single computer. This has led to the wide use of distributed computing, where a massive computational task is distributed among a large number of computing nodes in a communication network. In real-life, some of these computing nodes fail to deliver their task due to software/hardware failures, handling other tasks for the network, leaving the network, etc. These straggling nodes (typically around 5% of the processing nodes) result in unpredictable network performance and can significantly prolong job completion. Currently, redundancy in the form of repeating the tasks is implemented to combat the stragglers.Error-correcting codes offer an opportunity to combat stragglers at a much lower cost, reduced communication load, higher success rate, and with added security/privacy benefits. They also create the opportunity of using a large number of very low-cost hardware by the network to reliably finish a massive job in a short time. In this project(i) we will design various low-complexity error-correction coding algorithms that are feasible for large-scale distributed computing, hence enabling the network to handle data at scale reliably;(ii) we will design task scheduling algorithms that optimally distribute and schedule the tasks in the network in order to minimize the completion time/cost, with guaranteed success.We anticipate this project to significantly improve cloud services by developing coded distributed computation and task allocation/scheduling algorithms that (i) reduce the completion time and communication costs, (ii) very efficiently use the available resources, (iii) have low implementation complexity, and (iv) provide added privacy/security. In addition, our algorithms can be used in real-life applications such as telepresence, telehealth, augmented reality, distributed database management systems, real-time process control and more.
许多现代 ICT 应用程序都需要处理大规模数据,并需要单台计算机无法执行的大量计算。这导致了分布式计算的广泛使用,其中大量计算任务分布在通信网络中的大量计算节点中。在现实生活中,其中一些计算节点由于软件/硬件故障、处理网络的其他任务、离开网络等而无法交付任务。这些掉队节点(通常占处理节点的 5% 左右)导致不可预测的网络性能,可以显着延长作业完成时间。目前,采用重复任务形式的冗余来对抗掉队者。纠错码提供了以更低的成本、减少的通信负载、更高的成功率以及增加的安全/隐私优势来对抗掉队者的机会。它们还创造了通过网络使用大量成本极低的硬件在短时间内可靠地完成大量工作的机会。在这个项目中(i)我们将设计各种适用于大规模分布式计算的低复杂度纠错编码算法,从而使网络能够可靠地处理大规模数据;(ii)我们将设计最优的任务调度算法分配和调度网络中的任务,以最大程度地减少完成时间/成本,并保证成功。我们预计该项目将通过开发编码分布式计算和任务分配/调度算法(i)减少完成时间来显着改善云服务和沟通成本,(ii) 非常有效使用可用资源,(iii) 实现复杂性较低,(iv) 提供额外的隐私/安全性。此外,我们的算法还可用于现实生活中的应用,例如远程呈现、远程医疗、增强现实、分布式数据库管理系统、实时过程控制等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ardakani, Masoud其他文献

A probability model for lifetime of event-driven wireless sensor networks
Output-Threshold Multiple-Relay-Selection Scheme for Cooperative Wireless Networks
  • DOI:
    10.1109/tvt.2010.2048767
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Amarasuriya, Gayan;Ardakani, Masoud;Tellambura, Chintha
  • 通讯作者:
    Tellambura, Chintha
Maximum Likelihood Time Synchronization for Zero-Padded OFDM
  • DOI:
    10.1109/tsp.2020.3048231
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Roshandeh, Koosha Pourtahmasi;Mohammadkarimi, Mostafa;Ardakani, Masoud
  • 通讯作者:
    Ardakani, Masoud
Relay Selection in Network-Coded Cooperative MIMO Systems
  • DOI:
    10.1109/tcomm.2019.2911276
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Heidarpour, Ali Reza;Ardakani, Masoud;Di Renzo, Marco
  • 通讯作者:
    Di Renzo, Marco
Network-Coded Cooperative Systems With Generalized User-Relay Selection

Ardakani, Masoud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ardakani, Masoud', 18)}}的其他基金

Advanced coding solutions for large-scale data storage & communication
适用于大规模数据存储的高级编码解决方案
  • 批准号:
    RGPIN-2017-04119
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced coding solutions for large-scale data storage & communication
适用于大规模数据存储的高级编码解决方案
  • 批准号:
    RGPIN-2017-04119
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced coding techniques for 5G communications systems and beyond
适用于 5G 通信系统及其他系统的先进编码技术
  • 批准号:
    505501-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced coding solutions for large-scale data storage & communication
适用于大规模数据存储的高级编码解决方案
  • 批准号:
    RGPIN-2017-04119
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced coding techniques for 5G communications systems and beyond
适用于 5G 通信系统及其他系统的先进编码技术
  • 批准号:
    505501-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative Research and Development Grants
Fully ballance coded transmission for high-speed inter- and intra-chip data communication **
用于高速芯片间和芯片内数据通信的完全平衡编码传输**
  • 批准号:
    537288-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Advanced coding solutions for large-scale data storage & communication
适用于大规模数据存储的高级编码解决方案
  • 批准号:
    RGPIN-2017-04119
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced coding techniques for 5G communications systems and beyond
适用于 5G 通信系统及其他系统的先进编码技术
  • 批准号:
    505501-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced coding solutions for large-scale data storage & communication
适用于大规模数据存储的高级编码解决方案
  • 批准号:
    RGPIN-2017-04119
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Novel channel coding techniques under practical assumptions
实际假设下的新颖信道编码技术
  • 批准号:
    327650-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于自编码深度学习的空心涡轮叶盘高维小失效可靠性设计优化研究
  • 批准号:
    12302156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向新一代无线通信的高可靠低时延编码理论与技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向阻变存储的高可靠性数据检测与编码理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于随机加扰和空域编码的反射调制安全可靠传输技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向空间通信的高可靠低复杂度极化编码研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了