Development of advanced monitoring and control schemes for the primary aluminum industry

为原铝行业开发先进的监测和控制方案

基本信息

  • 批准号:
    557042-2020
  • 负责人:
  • 金额:
    $ 5.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This research program continues a 12-years ongoing partnership with Alcoa Corporation. It aims at improving process intelligence and agility of primary aluminum smelters to cope with the declining quality and increasing variability in raw materials (i.e., petroleum coke, coal tar pitch) affecting the industry since the past several years. The program led by Prof. C. Duchesne contributes to addressing these issues by using process systems engineering (PSE) tools, such as multivariate data analysis, process monitoring and quality control, to mitigate raw material variations and improve real-time decision making. Data-driven methods are used to extract and valorize the relevant information contained in the large industrial databases (Big Data) routinely collected by the smelters, and provide low-cost solutions to support process operations, aligned on the Industry 4.0 concepts. Past research in partnership with Alcoa focused on developing rapid and non-destructive sensors to measure and track the impact of raw material variability in various materials along the carbon anode manufacturing chain. The new research directions explored in this program are based 1) on sensors and monitoring schemes developed in the group in the last 5 years, and 2) on new technologies recently implemented at Alcoa smelters. More specifically, advanced monitoring and control schemes will be proposed based on a 4-points probe device (Alcoa technology) measuring the electrical resistivity of green anodes in multiple points, and individual anode electrical current sensing systems installed on several aluminum reduction cells. A simplified 1-D electrical circuit model of a reduction cell will also be built to estimate anode-cathode distances in real-time. The outcomes this program consist of systems and technologies to help Alcoa and the Canadian aluminum industry increase energy efficiency and reduce environmental footprint. Combined with the training of highly qualified personnel in the field, it will contribute to maintaining competitiveness and leadership of the Canadian aluminum industry Worldwide.
该研究计划持续了与Alcoa Corporation进行的12年持续合作伙伴关系。它旨在提高主要铝冶炼厂的过程智能和敏捷性,以应对以来几年以来,原材料的质量下降和不断增加的原材料(即石油焦炭,煤焦油沥青)的变化。由C. Duchesne教授领导的计划通过使用流程系统工程(PSE)工具(例如多元数据分析,过程监视和质量控制)来解决这些问题,以减轻原材料的变化并改善实时决策。数据驱动的方法用于提取和重视由冶炼厂常规收集的大型工业数据库(大数据)中包含的相关信息,并提供低成本解决方案以支持流程操作,并在行业4.0概念上对齐。过去与ALCOA合作的研究致力于开发快速和非破坏性传感器,以测量和跟踪沿碳阳极制造链中各种材料中原材料可变性的影响。该计划中探索的新研究方向是1)基于过去5年中该小组中开发的传感器和监视方案,以及2)最近在Alcoa冶炼厂实施的新技术。更具体地说,将根据4点探针设备(ALCOA技术)提出高级监控和控制方案,该设备测量了多个点绿色阳极的电阻率,以及安装在几个铝还原细胞上的单个阳极电流传感系统。还将构建简化的1D电路模型,以实时估算阳极 - 阴极距离。该计划的结果包括系统和技术,以帮助铝业和加拿大铝业行业提高能源效率并减少环境足迹。结合对该领域高素质人员的培训,它将有助于维持全球加拿大铝制行业的竞争力和领导能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duchesne, Carl其他文献

A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications
A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
  • DOI:
    10.1016/j.mineng.2007.04.009
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Tessier, Jayson;Duchesne, Carl;Bartolacci, Gianni
  • 通讯作者:
    Bartolacci, Gianni
Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites
  • DOI:
    10.1177/0021998314568576
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ghasemzadeh-Barvarz, Massoud;Duchesne, Carl;Rodrigue, Denis
  • 通讯作者:
    Rodrigue, Denis
Selection and Tuning of a Fast and Simple Phase-Contrast Microscopy Image Segmentation Algorithm for Measuring Myoblast Growth Kinetics in an Automated Manner
  • DOI:
    10.1017/s143192761300161x
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Juneau, Pierre-Marc;Garnier, Alain;Duchesne, Carl
  • 通讯作者:
    Duchesne, Carl
Single-cell level analysis of megakaryocyte growth and development
  • DOI:
    10.1016/j.diff.2011.12.003
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Leysi-Derilou, Younes;Duchesne, Carl;Pineault, Nicolas
  • 通讯作者:
    Pineault, Nicolas

Duchesne, Carl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duchesne, Carl', 18)}}的其他基金

New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2022
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2021
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPAS-2019-00118
  • 财政年份:
    2020
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
  • 批准号:
    557042-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2020
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPAS-2019-00118
  • 财政年份:
    2019
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
A hyperspectral Raman imaging systems for process analytical technology developments
用于过程分析技术开发的高光谱拉曼成像系统
  • 批准号:
    RTI-2020-00218
  • 财政年份:
    2019
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Tools and Instruments
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
  • 批准号:
    509004-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Collaborative Research and Development Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2019
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Discovery Grants Program - Individual
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
  • 批准号:
    509004-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新一代重要有机酸反式乌头酸的先进生物制造技术
  • 批准号:
    22338012
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Core B: Clinical Trials Core
核心 B:临床试验核心
  • 批准号:
    10554476
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
  • 批准号:
    10805071
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
Novel Insights into Osteoarthritis, Pain and Function: MOST4
对骨关节炎、疼痛和功能的新见解:MOST4
  • 批准号:
    10555681
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了