Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
基本信息
- 批准号:557042-2020
- 负责人:
- 金额:$ 5.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program continues a 12-years ongoing partnership with Alcoa Corporation. It aims at improving process intelligence and agility of primary aluminum smelters to cope with the declining quality and increasing variability in raw materials (i.e., petroleum coke, coal tar pitch) affecting the industry since the past several years. The program led by Prof. C. Duchesne contributes to addressing these issues by using process systems engineering (PSE) tools, such as multivariate data analysis, process monitoring and quality control, to mitigate raw material variations and improve real-time decision making. Data-driven methods are used to extract and valorize the relevant information contained in the large industrial databases (Big Data) routinely collected by the smelters, and provide low-cost solutions to support process operations, aligned on the Industry 4.0 concepts. Past research in partnership with Alcoa focused on developing rapid and non-destructive sensors to measure and track the impact of raw material variability in various materials along the carbon anode manufacturing chain. The new research directions explored in this program are based 1) on sensors and monitoring schemes developed in the group in the last 5 years, and 2) on new technologies recently implemented at Alcoa smelters. More specifically, advanced monitoring and control schemes will be proposed based on a 4-points probe device (Alcoa technology) measuring the electrical resistivity of green anodes in multiple points, and individual anode electrical current sensing systems installed on several aluminum reduction cells. A simplified 1-D electrical circuit model of a reduction cell will also be built to estimate anode-cathode distances in real-time. The outcomes this program consist of systems and technologies to help Alcoa and the Canadian aluminum industry increase energy efficiency and reduce environmental footprint. Combined with the training of highly qualified personnel in the field, it will contribute to maintaining competitiveness and leadership of the Canadian aluminum industry Worldwide.
该研究项目延续了与美国铝业公司 (Alcoa Corporation) 长达 12 年的合作关系。它旨在提高原铝冶炼厂的流程智能和敏捷性,以应对过去几年以来影响该行业的原材料(即石油焦、煤焦油沥青)质量下降和变异性增加的情况。由 C. Duchesne 教授领导的项目致力于通过使用过程系统工程 (PSE) 工具(例如多元数据分析、过程监控和质量控制)来解决这些问题,以减少原材料变化并改进实时决策。数据驱动方法用于提取和评估冶炼厂定期收集的大型工业数据库(大数据)中包含的相关信息,并提供低成本解决方案来支持流程操作,符合工业 4.0 概念。过去与美铝合作的研究重点是开发快速、无损的传感器,以测量和跟踪碳阳极制造链中各种材料的原材料变化的影响。该项目探索的新研究方向基于 1) 该小组过去 5 年开发的传感器和监测方案,2) 美铝冶炼厂最近实施的新技术。更具体地说,将提出先进的监测和控制方案,该方案基于测量多点绿色阳极电阻率的 4 点探针装置(美铝技术),以及安装在多个铝电解槽上的单独阳极电流传感系统。还将建立还原电池的简化一维电路模型,以实时估计阳极-阴极距离。该计划的成果包括帮助美国铝业公司和加拿大铝业提高能源效率并减少环境足迹的系统和技术。结合该领域高素质人才的培训,它将有助于保持加拿大铝业在全球的竞争力和领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duchesne, Carl其他文献
A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications
- DOI:
10.1016/j.chemolab.2009.09.005 - 发表时间:
2010-01-15 - 期刊:
- 影响因子:3.9
- 作者:
Gosselin, Ryan;Rodrigue, Denis;Duchesne, Carl - 通讯作者:
Duchesne, Carl
A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
- DOI:
10.1016/j.mineng.2007.04.009 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:4.8
- 作者:
Tessier, Jayson;Duchesne, Carl;Bartolacci, Gianni - 通讯作者:
Bartolacci, Gianni
Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites
- DOI:
10.1177/0021998314568576 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:2.9
- 作者:
Ghasemzadeh-Barvarz, Massoud;Duchesne, Carl;Rodrigue, Denis - 通讯作者:
Rodrigue, Denis
Selection and Tuning of a Fast and Simple Phase-Contrast Microscopy Image Segmentation Algorithm for Measuring Myoblast Growth Kinetics in an Automated Manner
- DOI:
10.1017/s143192761300161x - 发表时间:
2013-08-01 - 期刊:
- 影响因子:2.8
- 作者:
Juneau, Pierre-Marc;Garnier, Alain;Duchesne, Carl - 通讯作者:
Duchesne, Carl
Single-cell level analysis of megakaryocyte growth and development
- DOI:
10.1016/j.diff.2011.12.003 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Leysi-Derilou, Younes;Duchesne, Carl;Pineault, Nicolas - 通讯作者:
Pineault, Nicolas
Duchesne, Carl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duchesne, Carl', 18)}}的其他基金
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2022
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2021
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPAS-2019-00118 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
- 批准号:
557042-2020 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2020
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPAS-2019-00118 - 财政年份:2019
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
A hyperspectral Raman imaging systems for process analytical technology developments
用于过程分析技术开发的高光谱拉曼成像系统
- 批准号:
RTI-2020-00218 - 财政年份:2019
- 资助金额:
$ 5.19万 - 项目类别:
Research Tools and Instruments
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
- 批准号:
509004-2017 - 财政年份:2019
- 资助金额:
$ 5.19万 - 项目类别:
Collaborative Research and Development Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2019
- 资助金额:
$ 5.19万 - 项目类别:
Discovery Grants Program - Individual
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
- 批准号:
509004-2017 - 财政年份:2018
- 资助金额:
$ 5.19万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
- 批准号:72301177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于物理模型融合深度学习的先进合金极限条件应力应变行为预测
- 批准号:52311530082
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 5.19万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 5.19万 - 项目类别:
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
- 批准号:
10805071 - 财政年份:2023
- 资助金额:
$ 5.19万 - 项目类别:
Novel Insights into Osteoarthritis, Pain and Function: MOST4
对骨关节炎、疼痛和功能的新见解:MOST4
- 批准号:
10555681 - 财政年份:2023
- 资助金额:
$ 5.19万 - 项目类别: