A hyperspectral Raman imaging systems for process analytical technology developments

用于过程分析技术开发的高光谱拉曼成像系统

基本信息

  • 批准号:
    RTI-2020-00218
  • 负责人:
  • 金额:
    $ 8.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

A hyperspectral Raman imaging system is requested in this RTI proposal. It will support the research programs of 5 co-applicants located in 2 Canadian universities. The co-applicants need hyperspectral imaging equipment to develop innovative process analytical technologies (PAT) for real-time process monitoring and product quality control in important fields for the Canadian economy: advanced materials, energy and oil sands, CO2 capture technology, bio-energy and bio-based products, and pharmaceutical production. The applicants have reached the limit of the Near Infrared Chemical Imaging (NIR-CI) equipment they have been using in most of their collaborative research projects. There are three main issues with the current NIR-CI system: 1) it is highly sensitive to moisture adsorbed on surfaces, which interferes with the quantification of compounds of interest, 2) it is insensitive to inorganic compounds, 3) the spatial resolution of the chemical images is too low to achieve the desired limit of detection. NIR spectroscopy is based on photon absorption by polar molecular groups whereas Raman is based on inelastic scattering of radiations by symmetrical (non-polar) functional groups. This makes both methods complementary; molecules that cannot be detected with one method can be easily detected with the other. The Raman system will provide a more specific fingerprint of the materials allowing to discriminate classes of molecules and inorganic compounds, in particular. It will allow increasing the spatial resolution of the chemical images with respect to NIR (i.e. lower detection limit) which is required in most of the projects. Raman is also insensitive to water, which is a common interferent (moisture adsorbed on material surfaces) strongly affecting the NIR spectrum. The Raman equipment will provide further development and foster innovation in the collaborative research programs led by the co-applicants. It will also be used for training a significant number highly qualified personnel in these fields.
该 RTI 提案要求采用高光谱拉曼成像系统。它将支持位于加拿大两所大学的 5 名共同申请人的研究项目。共同申请人需要高光谱成像设备来开发创新的过程分析技术(PAT),用于加拿大经济重要领域的实时过程监控和产品质量控制:先进材料、能源和油砂、二氧化碳捕获技术、生物能源和生物基产品以及药品生产。申请人在大多数合作研究项目中使用的近红外化学成像(NIR-CI)设备已经达到了极限。目前的 NIR-CI 系统存在三个主要问题:1) 它对表面吸附的水分高度敏感,这会干扰目标化合物的定量;2) 它对无机化合物不敏感;3) 空间分辨率化学图像太低,无法达到所需的检测限。近红外光谱基于极性分子基团的光子吸收,而拉曼光谱基于对称(非极性)官能团对辐射的非弹性散射。这使得两种方法互补;用一种方法无法检测到的分子可以用另一种方法轻松检测到。拉曼系统将提供更具体的材料指纹,特别是能够区分分子和无机化合物的类别。它将允许提高大多数项目所需的化学图像相对于 NIR 的空间分辨率(即较低的检测限)。拉曼对水也不敏感,水是一种常见的干扰物(材料表面吸附的水分),会强烈影响近红外光谱。拉曼设备将在共同申请人领导的合作研究项目中提供进一步的开发和促进创新。它还将用于培训这些领域的大量高素质人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duchesne, Carl其他文献

A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications
A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
  • DOI:
    10.1016/j.mineng.2007.04.009
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Tessier, Jayson;Duchesne, Carl;Bartolacci, Gianni
  • 通讯作者:
    Bartolacci, Gianni
Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites
  • DOI:
    10.1177/0021998314568576
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ghasemzadeh-Barvarz, Massoud;Duchesne, Carl;Rodrigue, Denis
  • 通讯作者:
    Rodrigue, Denis
Selection and Tuning of a Fast and Simple Phase-Contrast Microscopy Image Segmentation Algorithm for Measuring Myoblast Growth Kinetics in an Automated Manner
  • DOI:
    10.1017/s143192761300161x
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Juneau, Pierre-Marc;Garnier, Alain;Duchesne, Carl
  • 通讯作者:
    Duchesne, Carl
Single-cell level analysis of megakaryocyte growth and development
  • DOI:
    10.1016/j.diff.2011.12.003
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Leysi-Derilou, Younes;Duchesne, Carl;Pineault, Nicolas
  • 通讯作者:
    Pineault, Nicolas

Duchesne, Carl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duchesne, Carl', 18)}}的其他基金

New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2022
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2021
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
  • 批准号:
    557042-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPAS-2019-00118
  • 财政年份:
    2020
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
  • 批准号:
    557042-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2020
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPAS-2019-00118
  • 财政年份:
    2019
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
  • 批准号:
    509004-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Collaborative Research and Development Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
  • 批准号:
    RGPIN-2019-04800
  • 财政年份:
    2019
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
  • 批准号:
    509004-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

面向高光谱受激拉曼成像的高性能双色超快光纤激光
  • 批准号:
    12374402
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于色散剪切干涉的深紫外自发拉曼散射高光谱成像机理和方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无背景高光谱受激拉曼激发荧光成像方法研究
  • 批准号:
    32250004
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于飞秒激光脉冲整形的高光谱相干拉曼显微成像研究
  • 批准号:
    61675057
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
针对前列腺癌中胆固醇酯的高光谱受激拉曼散射显微成像学研究
  • 批准号:
    81501516
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multimodal hyperspectral, Raman and x-ray fluorescence imaging for pigment identification in heritage
多模态高光谱、拉曼和 X 射线荧光成像用于遗产中的色素识别
  • 批准号:
    2579355
  • 财政年份:
    2021
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Studentship
Development and Application of Space- and Time-Resolved Hyperspectral Raman Imaging to in situ Study Mineral- and Glass-Water Reactions
空间和时间分辨高光谱拉曼成像的开发和应用,用于原位研究矿物和玻璃水反应
  • 批准号:
    389799517
  • 财政年份:
    2017
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Research Grants
Acquisition of a Cytoviva hyperspectral microscopy system
购置 Cytoviva 高光谱显微镜系统
  • 批准号:
    9274471
  • 财政年份:
    2017
  • 资助金额:
    $ 8.4万
  • 项目类别:
Real-time Imaging of High-Temperature Sintering and Associated Oxygen Isotope Exchange Reactions by Confocal Hyperspectral Raman Spectroscopy
通过共焦高光谱拉曼光谱对高温烧结和相关氧同位素交换反应进行实时成像
  • 批准号:
    390544388
  • 财政年份:
    2017
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Research Grants
Artificial intelligence pathological diagnosis by hyperspectral nonlinear Raman scattering imaging
高光谱非线性拉曼散射成像人工智能病理诊断
  • 批准号:
    17H02793
  • 财政年份:
    2017
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了