Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
基本信息
- 批准号:RGPIN-2020-07108
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research program is to develop novel mechanical devices using concepts similar to those which have so successfully been used with artificial neural networks in the field of machine learning. By adapting to physical objects system architectures and design methodologies that were initially developed for machine learning in software, the proposed research will lead to entirely new classes of mechanical devices which can implement complex functions, be simple to design in an automated manner, and be highly efficient in terms of size and energy consumption.
Over the last few years, we have contributed to the understanding that some of the most fundamental features of artificial neural networks, which enable their computing model and lead to their advantageous properties, can actually be realized in physical objects, and in particular in mechanical systems. As an example, we have shown that the non-linear dynamics of a small silicon beam clamped at both ends in a MEMS can be used as a resource for energy-efficient, dense neuromorphic computations. We have also presented the first demonstration of a 3D-printed metamaterial with a stiffness that is a complex function of patterns in the external force field acting on the metamaterial, and which can therefore be trained to respond in highly specific manners to external loads.
The proposed work consists in the systematic investigation of the physical implementation of machine learning concepts directly within mechanical systems and structures. We have already demonstrated that this line of research could yield functional prototypes which represent a new way of building physical devices, to provide solutions for challenging applications. With this Discovery grant, various concepts from the field of machine learning will be applied to mechanical objects that are designed to have certain properties that are similar to those found in artificial neural networks. As a result, the mechanical devices will have the ability to respond in elaborated ways to external loads or stimuli (acceleration, sound). They will be trained to acquire these complex responses, instead of being designed to the smallest detail. And they are expected to inherit the remarkable generalization capability of neural networks, to respond adequately to stimuli never seen during training. The main anticipated outcome of the proposed research will be an analysis and design methodology supporting new classes of devices (MEMS, metamaterials, etc.). In the long term, these could be transferred to the industry to more efficiently solve problems in high technology fields such as patient health monitoring, robot control, automated manufacturing, smart sensors and the Internet of Things.
拟议研究计划的目标是使用类似于机器学习领域人工神经网络成功使用的概念来开发新型机械设备。通过适应最初为软件机器学习而开发的物理对象系统架构和设计方法,所提出的研究将带来全新类别的机械设备,这些设备可以实现复杂的功能,易于以自动化方式设计,并且高度自动化。在尺寸和能源消耗方面高效。
在过去的几年里,我们帮助理解了人工神经网络的一些最基本的特征,这些特征使它们的计算模型成为可能并产生其有利的特性,实际上可以在物理对象中实现,特别是在机械系统中。作为一个例子,我们已经证明,MEMS 中两端夹紧的小硅梁的非线性动力学可以用作节能、密集神经形态计算的资源。我们还首次展示了 3D 打印超材料,其刚度是作用在超材料上的外力场模式的复杂函数,因此可以训练它以高度特定的方式响应外部载荷。
拟议的工作包括直接在机械系统和结构中系统地研究机器学习概念的物理实现。我们已经证明,这一系列研究可以产生功能原型,代表一种构建物理设备的新方法,为具有挑战性的应用提供解决方案。通过这项发现资助,机器学习领域的各种概念将被应用于机械物体,这些机械物体被设计成具有与人工神经网络中相似的某些属性。因此,机械装置将能够以复杂的方式响应外部负载或刺激(加速度、声音)。他们将接受训练来获得这些复杂的反应,而不是被设计成最小的细节。他们预计将继承神经网络卓越的泛化能力,对训练期间从未见过的刺激做出充分的反应。拟议研究的主要预期成果将是支持新型设备(MEMS、超材料等)的分析和设计方法。从长远来看,这些可以转移到行业中,以更有效地解决患者健康监测、机器人控制、自动化制造、智能传感器和物联网等高科技领域的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvestre, Julien其他文献
Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait.
- DOI:
10.3390/ijerph20043120 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:0
- 作者:
Havashinezhadian, Sara;Chiasson-Poirier, Laurent;Sylvestre, Julien;Turcot, Katia - 通讯作者:
Turcot, Katia
Sylvestre, Julien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvestre, Julien', 18)}}的其他基金
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
NSERC/IBM Canada Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 加拿大高性能异构集成工业研究主席
- 批准号:
463315-2018 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Industrial Research Chairs
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning in MEMS for Biomarkers Generation
MEMS 中的机器学习用于生成生物标志物
- 批准号:
568675-2021 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning in MEMS for Biomarkers Generation
MEMS 中的机器学习用于生成生物标志物
- 批准号:
568675-2021 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
NSERC/IBM Canada Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 加拿大高性能异构集成工业研究主席
- 批准号:
463315-2018 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Industrial Research Chairs
AI-MEMS Sensors for Preemptive Maintenance (Phase I)
用于预防性维护的 AI-MEMS 传感器(第一阶段)
- 批准号:
555555-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Idea to Innovation
Integration technologies for immersion cooling in microelectronics
微电子领域浸入式冷却集成技术
- 批准号:
513262-2017 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
翻译水平选择性调控皮层AMPA受体表达促进神经元形态功能发育及神经环路塑造的分子机制及生理功能研究
- 批准号:32360194
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
自身运动方向感知中全局形态信息和光流信息跨时域整合的认知神经机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶酶体水解酶 cathepsin D 对神经元形态发育的调控及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联带运动影响声门区三维形态和发声功能的神经电生理机制
- 批准号:82000971
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
BP/POx层状结构离子隧穿调控机制及其神经形态应用探索
- 批准号:51872010
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Novel Neuromorphic Mechanisms and Structures
新颖的神经形态机制和结构
- 批准号:
RGPIN-2020-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Local and Central Control Mechanisms in the Barorecptor Vagal Reflex with Neuromorphic Engineering Applications to Chemical Process Control
压力感受器迷走神经反射的局部和中央控制机制与神经形态工程在化学过程控制中的应用
- 批准号:
9712820 - 财政年份:1997
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant