Smart skin for control of wall-bounded turbulent flows

用于控制壁面湍流的智能蒙皮

基本信息

  • 批准号:
    RGPIN-2020-07231
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

A boundary layer is a thin layer of fluid in the immediate vicinity of a solid surface where fluid velocity transitions from the velocity of the solid surface to the bulk fluid velocity. The shear stress in the fluid generates this velocity gradient, and projects as skin-friction' on the surface. In most industrial situations, for example, the flow over an aircraft or inside a pipeline, the motions of fluid elements in the boundary layer are chaotic. Such a fluid layer is known as a turbulent boundary layer (TBL), and has a larger velocity gradient that generates greater skin-friction. In addition, when an increasing pressure gradient is imposed on a TBL, like in a diffuser or on an aircraft wing, the TBL may separate from the surface. This generates pressure drag' and strong fluid-structure interactions. As a result, the TBL is the chief source of high fuel consumption, pollution, and structural vibration in aircrafts, submersibles, ships, and pipelines. Due to this integral effect, any progress in the control of TBLs will have a profound impact on our socio-economic and environmental protection needs. The subject of this research program is the control of attached and separated TBLs using a novel smart skin'. To achieve this goal, we will first experimentally characterize the surface pressure of large-scale motions in attached and separated TBLs to develop a predictive model for turbulence control. In parallel, we will develop deformable surfaces that can generate on-demand local surface depression or protrusion. Linear actuators, with a frequency and displacement that matches the pressure footprint, will be integrated under a deformable skin. We will implement an array of active deformable panels and surface pressure sensors into a smart skin'. Finally, the performance of the smart skin' will be evaluated in a closed-loop system for active control of attached and separated TBLs. In the long-term, the proposed program will increase our fundamental knowledge of coherent motions in TBLs and provide guidelines on how to control TBLs. The developed smart skin' will make it possible to manipulate a variety of turbulent flows including TBLs. The smart skin will also become a test-bench for the application of advanced control algorithms, artificial intelligence, and machine learning. Such an approach can ultimately modernize how we handle turbulence. It can make a breakthrough by bringing turbulence control to a variety of industrial sectors to increase efficiency and reduce environmental footprints. In addition, the multidisciplinary nature of this research program will train highly qualified personnel who are trained in a variety of disciplines.
边界层是紧邻固体表面的一薄层流体,其中流体速度从固体表面的速度转变为整体流体速度。流体中的剪切应力产生这种速度梯度,并以“表面摩擦”的形式投射到表面上。在大多数工业情况下,例如飞机上或管道内的流动,边界层中流体单元的运动是混乱的。这样的流体层被称为湍流边界层(TBL),并且具有较大的速度梯度,会产生更大的表面摩擦。此外,当对 TBL 施加不断增加的压力梯度时,例如在扩散器或飞机机翼上,TBL 可能会与表面分离。这会产生压力阻力和强烈的流体-结构相互作用。因此,TBL 是飞机、潜水器、船舶和管道中高燃油消耗、污染和结构振动的主要来源。由于这种整体效应,TBL控制方面的任何进展都将对我们的社会经济和环境保护需求产生深远的影响。 该研究项目的主题是使用新型智能皮肤来控制附着和分离的 TBL。为了实现这一目标,我们将首先通过实验表征附着和分离的 TBL 中大规模运动的表面压力,以开发湍流控制的预测模型。与此同时,我们将开发可变形表面,可以按需产生局部表面凹陷或突出。频率和位移与压力足迹相匹配的线性致动器将集成在可变形蒙皮下。我们将在智能皮肤中实现一系列主动变形面板和表面压力传感器。最后,“智能皮肤”的性能将在闭环系统中进行评估,以主动控制连接和分离的 TBL。 从长远来看,拟议的计划将增加我们对 TBL 相干运动的基础知识,并为如何控制 TBL 提供指导。开发的“智能皮肤”将使操纵包括 TBL 在内的各种湍流成为可能。智能皮肤也将成为先进控制算法、人工智能和机器学习应用的测试平台。这种方法最终可以使我们处理动荡的方式现代化。它可以通过为各种工业部门带来湍流控制来提高效率并减少环境足迹来取得突破。此外,该研究项目的多学科性质将培养受过多种学科培训的高素质人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghaemi, Sina其他文献

Passive and active control of turbulent flows
  • DOI:
    10.1063/5.0022548
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
Effect of vane sweep angle on vortex generator wake
  • DOI:
    10.1007/s00348-018-2666-1
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wang, Sen;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina
On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments
  • DOI:
    10.1007/s00348-015-1909-7
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Scarano, Fulvio;Ghaemi, Sina;Sciacchitano, Andrea
  • 通讯作者:
    Sciacchitano, Andrea
Multi-pass light amplification for tomographic particle image velocimetry applications
  • DOI:
    10.1088/0957-0233/21/12/127002
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ghaemi, Sina;Scarano, Fulvio
  • 通讯作者:
    Scarano, Fulvio
Turbulent channel flow over riblets with superhydrophobic coating
  • DOI:
    10.1016/j.expthermflusci.2018.02.001
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Abu Rowin, Wagih;Hou, Jianfeng;Ghaemi, Sina
  • 通讯作者:
    Ghaemi, Sina

Ghaemi, Sina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghaemi, Sina', 18)}}的其他基金

Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Nanoscale materials for increasing the performance of cooling systems
用于提高冷却系统性能的纳米材料
  • 批准号:
    571010-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    571051-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modeling and wind tunnel testing of a coaxial helicopter rotor
同轴直升机旋翼的建模和风洞测试
  • 批准号:
    537173-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Surfactants for Reduction of Drag in Geothermal Systems
用于减少地热系统阻力的表面活性剂
  • 批准号:
    531190-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Reduction of skin-friction in large-scale turbulent flows using superhydrophobic surfaces
使用超疏水表面减少大规模湍流中的表面摩擦
  • 批准号:
    RGPIN-2014-04320
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于大面积高性能仿生电子皮肤的机器人安全控制技术
  • 批准号:
    52003134
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
黑色素瘤光热治疗与皮肤缺损修复的生物支架可控制备和生物学响应机理研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
激光热疗中皮肤组织的热力学响应与损伤行为及控制方法研究
  • 批准号:
    11872098
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
纤维基三明治夹芯结构电子皮肤的可控制备及动态压力传感机制研究
  • 批准号:
    51873030
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
载18味党参丸/PLGA静电纺丝纤维膜用于皮肤组织工程
  • 批准号:
    51503171
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wicked Smart Pad: Washable Sensorized Bedding for the Prevention and Detection of Moisture Events
Wicked Smart Pad:可清洗的感应床上用品,用于预防和检测潮湿事件
  • 批准号:
    10601816
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPIN-2020-07231
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
  • 批准号:
    10590732
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Smart skin for control of wall-bounded turbulent flows
用于控制壁面湍流的智能蒙皮
  • 批准号:
    RGPAS-2020-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Cannabis use following trauma exposure: An observational study of the impact of acute stress and fear response on cannabis outcomes
创伤暴露后使用大麻:急性压力和恐惧反应对大麻结果影响的观察性研究
  • 批准号:
    10444156
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了