Leveraging FPGAs for Machine Learning Implementation and Acceleration
利用 FPGA 实现机器学习和加速
基本信息
- 批准号:RGPIN-2020-07118
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program proposes to develop new technology that will lead to improved object detection and computer vision for autonomous vehicles using machine learning. The technology will include both software and hardware for compute-acceleration using field-programmable gate arrays (FPGAs). FPGAs are a type of integrated circuit chip that can be programmed to implement different applications in hardware. The program comprises three related research thrusts: neural-network (NN) algorithms that incorporate sensor-fusion techniques, NN circuit architectures for FPGAs, and end-user applications of this technology, such as enhancing vision for auto-drivers in conditions that are difficult for those drivers to manage.
The traditional approach to object detection for autonomous vehicles has been a modified image classification task, which locates objects (e.g. cars, pedestrians) in a frame as well as performing an object classification task. However, as research has progressed, promising results with Light Detection and Ranging (LiDAR) data has catalyzed research into fusion of LiDAR and vision (camera) sensors. In this research program we propose to explore and fully understand fusion operations like the element-wise mean, but taking into consideration the predicted performance of individual sensors in novel ways. The performance evaluation of sensors becomes useful when one sensor is compromised through weather, component breakdown or intrusion attempts. When a sensor is incorrectly making predictions, the fusion-prediction network must be able to dynamically compensate to avoid degradation of the entire object detection system.
State-of-the-art computer vision solutions for autonomous vehicles increasing rely on convolutional neural networks (CNNs) to achieve good quality of result. A CNN typically has millions of neurons and synapses which incur high computational complexity and storage requirements. Therefore, deploying CNNs on autonomous cars and drones as object detectors and sensor fusion solutions is difficult because of the tight power budget, low latency requirement, and scarce computation resources in these platforms. FPGAs have emerged as a popular substrate for implementing dedicated CNN accelerators for these applications.
Results from this research program will be applied to a multi-university international self-driving automotive competition being sponsored by General Motors. Our focus will be on enhancing an automobile's ability to "see" properly in imperfect conditions, such as night driving, rain driving or snow driving. This technology could also be useful for any person who struggles with vision issues, including the elderly. Enhanced images could be provided through an existing wearable display, a clear display, via projection onto a windshield, and so on. Any person who suffers from vision restrictions could benefit greatly.
该研究计划旨在开发新技术,利用机器学习改进自动驾驶汽车的物体检测和计算机视觉。该技术将包括使用现场可编程门阵列(FPGA)进行计算加速的软件和硬件。 FPGA 是一种集成电路芯片,可以通过编程在硬件中实现不同的应用。该计划包括三个相关的研究重点:结合传感器融合技术的神经网络 (NN) 算法、FPGA 的 NN 电路架构以及该技术的最终用户应用,例如增强自动驾驶者在困难条件下的视力供那些司机管理。
自动驾驶车辆目标检测的传统方法是改进的图像分类任务,它定位帧中的目标(例如汽车、行人)并执行目标分类任务。然而,随着研究的进展,光探测和测距 (LiDAR) 数据的有希望的结果促进了 LiDAR 和视觉(相机)传感器融合的研究。在这个研究项目中,我们建议探索并充分理解融合操作,例如元素均值,但以新颖的方式考虑单个传感器的预测性能。当一个传感器因天气、组件故障或入侵尝试而受到损害时,传感器的性能评估就变得有用。当传感器错误地做出预测时,融合预测网络必须能够动态补偿,以避免整个物体检测系统性能下降。
最先进的自动驾驶汽车计算机视觉解决方案越来越依赖卷积神经网络 (CNN) 来获得高质量的结果。 CNN 通常具有数百万个神经元和突触,这会带来很高的计算复杂性和存储要求。因此,在自动驾驶汽车和无人机上部署 CNN 作为目标检测器和传感器融合解决方案是很困难的,因为这些平台的功耗预算紧张、延迟要求低且计算资源稀缺。 FPGA 已成为为这些应用实现专用 CNN 加速器的流行基板。
该研究项目的结果将应用于由通用汽车赞助的多所大学国际自动驾驶汽车竞赛。我们的重点是增强汽车在不完美的条件下(例如夜间驾驶、雨天驾驶或雪地驾驶)正确“看见”的能力。这项技术对于任何患有视力问题的人(包括老年人)也很有用。增强的图像可以通过现有的可穿戴显示器、清晰的显示器、通过投影到挡风玻璃上等来提供。任何患有视力障碍的人都可以受益匪浅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brown, Stephen其他文献
Dilatable pulmonary artery banding in infants with low birth weight or complex congenital heart disease allows avoidance or postponement of subsequent surgery
- DOI:
10.1016/j.ejcts.2009.06.056 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:3.4
- 作者:
Brown, Stephen;Boshoff, Derize;Gewillig, Marc - 通讯作者:
Gewillig, Marc
Relative Shorebird Densities at Coastal Sites in the Arctic National Wildlife Refuge
- DOI:
10.1675/063.035.0405 - 发表时间:
2012-12-01 - 期刊:
- 影响因子:0.3
- 作者:
Brown, Stephen;Kendall, Steve;Benson, Anna-Marie - 通讯作者:
Benson, Anna-Marie
Right ventricle outflow tract prestenting: In vitro testing of rigidity and corrosion properties
- DOI:
10.1002/ccd.27320 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:2.3
- 作者:
Cools, Bjorn;Brown, Stephen;Gewillig, Marc - 通讯作者:
Gewillig, Marc
NGX-4010, a Capsaicin 8% Dermal Patch, for the Treatment of Painful HIV-associated Distal Sensory Polyneuropathy
- DOI:
10.1097/ajp.0b013e318287a32f - 发表时间:
2014-02-01 - 期刊:
- 影响因子:2.9
- 作者:
Simpson, David M.;Brown, Stephen;Vanhove, Geertrui F. - 通讯作者:
Vanhove, Geertrui F.
Approaches to study in undergraduate nursing students in regional Victoria, Australia.
- DOI:
10.1515/ijnes-2014-0020 - 发表时间:
2014-11-08 - 期刊:
- 影响因子:1
- 作者:
Brown, Stephen;Wakeling, Lara;White, Sue - 通讯作者:
White, Sue
Brown, Stephen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brown, Stephen', 18)}}的其他基金
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPAS-2020-00022 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPIN-2020-04521 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Leveraging FPGAs for Machine Learning Implementation and Acceleration
利用 FPGA 实现机器学习和加速
- 批准号:
RGPIN-2020-07118 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPAS-2020-00022 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPIN-2020-04521 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Leveraging FPGAs for Machine Learning Implementation and Acceleration
利用 FPGA 实现机器学习和加速
- 批准号:
RGPIN-2020-07118 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPAS-2020-00022 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Interplay between mechanical behaviour of the spine and skeletal muscle
脊柱和骨骼肌机械行为之间的相互作用
- 批准号:
RGPIN-2020-04521 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
High-Level Design for FPGAs and Embedded Systems
FPGA 和嵌入式系统的高级设计
- 批准号:
RGPIN-2015-06527 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Reciprocal Relationships between Spine Muscle Design, Remodeling and Spine Stability
脊柱肌肉设计、重塑和脊柱稳定性之间的相互关系
- 批准号:
402407-2013 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
布线质量驱动的3D FPGA布局算法研究
- 批准号:62374138
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
递归神经网络在FPGA上低功耗、可扩展、分布式的实现
- 批准号:62311530099
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
大规模多目标整数优化问题的图神经网络求解算法研究及FPGA硬件实现
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于FPGA的图神经网络加速器系统设计理论、优化方法及关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Machine Learning and FPGA optimisation for proton beam therapy
用于质子束治疗的机器学习和 FPGA 优化
- 批准号:
2869997 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Studentship
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2411207 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2153525 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Human-like machine tactile sensation using recurrent temporal and spacial reduction
使用循环时间和空间缩减的类人机器触觉
- 批准号:
22H00542 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)