Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy

开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用

基本信息

  • 批准号:
    RGPIN-2020-07095
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Coupling renewably generated electricity with inert starting materials to produce value-added chemicals and fuels could have potentially transformative benefits for society. However, current state-of-the-art energy storage and conversion devices such as batteries for electric vehicles and electrochemically generating carbon-based fuels are not yet efficient enough to justify the widespread implementation of these systems from an economic perspective. In order to design improved energy storage and conversion devices, researchers need to understand the fundamental mechanisms that govern energy transformation, yet this is still a challenge due to the complexity of these multi-component systems. Accurate computational simulations can give insight into chemical mechanisms where intermediates species are difficult to detect (for example, being too transient or too dilute) via current experimental techniques. Without a rigourous set of experimental data on reaction intermediates to guide computational chemists, the current challenge is to design computational simulations to understand the observables that are knownsuch as product formation rateswith the ultimate goal being making reliable predictions about how to improve the efficiency of a given energy storage or catalytic system. Hence, these simulations need to be extremely accurate both in terms of the fundamental interactions between individual atoms, and the model itself needs to be a detailed enough representation of reality. To meet the requirement of chemical accuracy, my research program will utilize quantum mechanical methods (which resolve the chemical system to the level of electrons) to map out reaction pathways in three different energy transformation applications: (i) aqueous metal-air batteries which could extend the range of electric vehicles to be on par with that of internal combustion engine vehicles, (ii) electrochemically converting CO2 to carbon-based fuels such as methane and ethanol to both close the carbon cycle and mitigate the effects of climate change, and (iii) applying statistical mechanical techniques to the cathodic half-reaction for water splitting (hydrogen evolution). The results from all three projects will be used to develop a more complete computational model for studying electrochemical processes. The long-term vision of my research program will provide researchers with a framework of computational simulations to study generalized electrochemical reactions, and take advantage of the efficiency offered by machine-learning approaches. The ultimate goal from developing this framework is to provide researchers with a comprehensive electrochemical model as well as a means to carry out efficient calculations that are of high enough quality such that theory/computation alone could make quantitative predictions of improved electrochemical energy storage systems.
将可再生电力与惰性原材料结合起来生产增值化学品和燃料可能会给社会带来潜在的变革性效益。然而,当前最先进的能量存储和转换设备,例如电动汽车电池和电化学生成碳基燃料,其效率还不足以证明从经济角度广泛实施这些系统的合理性。为了设计改进的能量存储和转换设备,研究人员需要了解控制能量转换的基本机制,但由于这些多组件系统的复杂性,这仍然是一个挑战。 准确的计算模拟可以深入了解通过当前实验技术难以检测中间体物质(例如,太短暂或太稀释)的化学机制。如果没有一套严格的反应中间体实验数据来指导计算化学家,当前的挑战是设计计算模拟来了解已知的可观察数据,例如产物形成速率,最终目标是对如何提高给定反应的效率做出可靠的预测能量储存或催化系统。因此,这些模拟在单个原子之间的基本相互作用方面都需要极其准确,并且模型本身需要足够详细地表示现实。 为了满足化学精度的要求,我的研究计划将利用量子力学方法(将化学系统解析为电子水平)来绘制三种不同能量转换应用中的反应路径:(i)水金属-空气电池,它可以将电动汽车的续航里程扩大到与内燃机汽车相当,(ii) 通过电化学方式将二氧化碳转化为甲烷和乙醇等碳基燃料,以关闭碳循环并减轻气候变化的影响,以及( iii) 将统计机械技术应用于阴极水分解的半反应(析氢)。所有三个项目的结果将用于开发更完整的计算模型来研究电化学过程。 我的研究计划的长期愿景将为研究人员提供一个计算模拟框架来研究广义电化学反应,并利用机器学习方法提供的效率。开发该框架的最终目标是为研究人员提供一个全面的电化学模型以及一种进行足够高质量的有效计算的方法,以便仅凭理论/计算就可以对改进的电化学储能系统进行定量预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Leanne其他文献

Changes in Tophus Composition During Urate-Lowering Therapy: A Dual-Energy Computed Tomography Study
  • DOI:
    10.1002/acr.25084
  • 发表时间:
    2023-02-18
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chen, Leanne;Gamble, Gregory D.;Dalbeth, Nicola
  • 通讯作者:
    Dalbeth, Nicola

Chen, Leanne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Leanne', 18)}}的其他基金

Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
  • 批准号:
    RGPIN-2020-07095
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
  • 批准号:
    RGPIN-2020-07095
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
  • 批准号:
    DGECR-2020-00194
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Towards the Development, Validation, and Comparison of Lipid Force Fields
脂质力场的开发、验证和比较
  • 批准号:
    439480-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards the Development, Validation, and Comparison of Lipid Force Fields
脂质力场的开发、验证和比较
  • 批准号:
    439480-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards the Development, Validation, and Comparison of Lipid Force Fields
脂质力场的开发、验证和比较
  • 批准号:
    439480-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Experimental and theoretical investigation of new organoboron photochromic compounds for applications as smart windows
用于智能窗户应用的新型有机硼光致变色化合物的实验和理论研究
  • 批准号:
    427188-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postgraduate Scholarships - Master's
Quantum Chemical Study of Photochromic Switching in Organoboron Compounds
有机硼化合物光致变色开关的量子化学研究
  • 批准号:
    415038-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

面向多源和大规模数据集的多元合金原子移动性参数数据库的自动化建立方法及其应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模单原子集成
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    80 万元
  • 项目类别:
    重大研究计划
氮掺杂碳负载过渡金属单原子催化剂的规模化制备及其高性能电还原CO2
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于兰州强流重离子加速器装置的丰中子重核及超重核结构的研究
  • 批准号:
    U1832139
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    联合基金项目
天然无规蛋白的氨基酸环境特异性分子力场研究
  • 批准号:
    31770771
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
  • 批准号:
    DP240100464
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Projects
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
  • 批准号:
    23H01850
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了