Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
基本信息
- 批准号:RGPIN-2020-04186
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the deployment of electronics across the modern economy, there is a need to ensure the reliability of electronic devices and systems in a wide range of sectors. Integrated Circuits (ICs, or simply "chips") are subject to degradation and aging due to a number of failure mechanisms that can lead to chip failure, possibly months or years after deployment. We focus specifically on electromigration (EM) in metal lines, a failure mechanism that causes metal lines on a chip to degrade and fail under high current density. The impact of EM has gotten worse with the shrinking dimensions of modern IC technology. My group develops computer-aided design (CAD) tools to ensure chip robustness in the face of EM degradation.
Traditional methods of EM checking are based on empirical models and involve checking the current densities in metal lines against specifications that are technology-specific, rather than design-specific. These methods are easy to use and have served the industry well, but have become inadequate for modern IC technology. Among other things, a key failing of these methods is that they cannot track the movement of metal atoms across metal branches, leading to much reduced accuracy. In our previous work, we have developed an efficient approach for physics-based (rather than empirical) EM checking, based on simulation of the mechanical stress that develops in metal lines under high current density. This allows us to track the movement of metal atoms across different branches in large multi-branch metal structures, providing significant accuracy improvement. We have thus developed the first-ever EM stress simulator [IRPS-19], which was recognized with a Best Paper Award in ICCAD-2016.
However, stress simulation is more time-consuming than a simple current density check, so more work is required before these advances can be transferred to the industry. This project aims to address this need, with a key innovative approach for current constraints generation. This would involve formulating and solving the inverse of the stress simulation problem, and promises to deliver high-impact solutions to both the research community and the industry. In the simulation approach, a simulator takes in the given input current specifications and provides the mechanical stress over time. Instead, given a safety limit on the stress everywhere in a metal network, we propose to generate constraints on the branch currents which, if guaranteed by design, would ensure that the stress remains safe during the specified chip lifetime. One can then simply check during design if the branch current densities satisfy the generated current constraints. The overall approach would effectively translate the EM lifetime specification into a specification of branch current constraints that are both technology and design specific. It would combine the accuracy of stress-based analysis with the speed and simplicity of a current density check; it would be the best of both worlds.
随着电子产品在现代经济中的部署,需要确保各个领域的电子设备和系统的可靠性。集成电路(IC,或简称为“芯片”)由于多种可能导致芯片故障(可能在部署后数月或数年)的故障机制而容易退化和老化。我们特别关注金属线中的电迁移(EM),这是一种导致芯片上的金属线在高电流密度下退化和失效的故障机制。随着现代 IC 技术尺寸的缩小,EM 的影响变得更加严重。我的团队开发计算机辅助设计 (CAD) 工具,以确保芯片在电磁退化时的稳健性。
传统的 EM 检查方法基于经验模型,涉及根据特定技术而非特定设计的规范检查金属线中的电流密度。这些方法易于使用,并且很好地服务于整个行业,但对于现代 IC 技术来说已经不够了。除其他外,这些方法的一个主要缺点是它们无法跟踪金属原子跨金属分支的运动,导致准确性大大降低。在我们之前的工作中,我们基于对高电流密度下金属线中产生的机械应力的模拟,开发了一种基于物理(而不是经验)的电磁检查的有效方法。这使我们能够跟踪大型多分支金属结构中不同分支的金属原子的运动,从而显着提高准确性。因此,我们开发了有史以来第一个电磁应力模拟器 [IRPS-19],并荣获 ICCAD-2016 最佳论文奖。
然而,应力模拟比简单的电流密度检查更耗时,因此在将这些进步转移到行业之前还需要做更多的工作。该项目旨在通过针对当前约束生成的关键创新方法来满足这一需求。这将涉及制定和解决应力模拟问题的逆问题,并有望为研究界和行业提供高影响力的解决方案。在仿真方法中,模拟器接受给定的输入电流规格并提供随时间变化的机械应力。相反,考虑到金属网络中各处应力的安全限制,我们建议对分支电流产生约束,如果通过设计保证,将确保应力在指定的芯片寿命期间保持安全。然后,人们可以在设计期间简单地检查支路电流密度是否满足生成的电流约束。整体方法将有效地将 EM 寿命规范转化为技术和设计特定的支路电流约束规范。它将基于应力的分析的准确性与电流密度检查的速度和简单性结合起来;这将是两全其美的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Najm, Farid其他文献
Najm, Farid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Najm, Farid', 18)}}的其他基金
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2020-04186 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2020-04186 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2020-04186 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2020-04186 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2015-03759 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
- 批准号:
418003-2016 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Industrial Research Chairs
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
- 批准号:
418003-2016 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Industrial Research Chairs
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2015-03759 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2015-03759 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2015-03759 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于城市形态双重表征互动学习的人工智能辅助城市设计技术
- 批准号:52308068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的高铁车站候车大厅旅客行为仿真模型及其辅助优化设计研究
- 批准号:52308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
- 批准号:32371465
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机器学习辅助的多尺度纤维螺旋的构效关系研究与逆向设计
- 批准号:22375180
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: SmartCAD: Shaping The Next Revolution in Computer-Aided Design
职业生涯:SmartCAD:塑造计算机辅助设计的下一场革命
- 批准号:
2339249 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Conference: 10th International Conference on Foundations of Computer Aided Process Design (FOCAPD-2024): Designing for the Future Digital and Carbon Neutral Economy
会议:第十届计算机辅助过程设计基础国际会议(FOCAPD-2024):为未来数字和碳中和经济设计
- 批准号:
2413592 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Biologically-engineered Transcatheter Vein Valve: Design Optimization and Preclinical Testing
生物工程经导管静脉瓣膜:设计优化和临床前测试
- 批准号:
10594865 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别: