Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems

网络车辆系统的学习辅助分布式估计和控制

基本信息

  • 批准号:
    RGPIN-2020-05097
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Modern networked vehicular systems are leveraging advances in connectivity to drive innovation in major markets across the globe. Intelligent transportation, for example, which connects vehicles and infrastructure to enable dramatic improvements in fuel efficiency (up to 22%) and passenger safety (25% fewer accidents in winter conditions), is one of the world's fastest growing industries. However, traditional centralized architectures for data fusion, estimation, and control in these complex, interconnected systems are prohibitively inefficient (computationally). Centralized systems have limited flexibility and modularity, rendering the network susceptible to faults and disturbances that could imperil the entire system from just a single point of failure. New networked control systems built upon sub-control data systems that exchange information through a communication network and that leverage distributed, machine learning-enhanced algorithms present a promising solution to these challenges. The potential to enable fast and reconfigurable mechanisms for increasingly prevalent cyber-physical systems, Automated Driving Systems (ADS), and cooperative vehicles, underscores the critical need to develop more reliable distributed-system designs. Current model-based distributed control approaches are reaching their performance limits due to the growing complexity of such networked systems, therefore impacting the model's predictive capacity for decision-making and the resilience of the system to unexpected events and communication disturbances. Therefore, the proposed research program will advance a new learning-aided distributed estimation and control platform for networked vehicular systems using experimental data that describes the main properties of each subsystem, provided through broadband communication (with high data rates) across these networked nodes. The overarching, long-term goal is to develop a new control and diagnosis paradigm for networked vehicular systems, enabling increased reliability and performance through co-design of control and learning algorithms. Through the next five years, the team will address core challenges to rendering distributed systems more computationally efficient and reliable by combining model- and learning-based structures, taking advantage of the lower latency and higher data rates provided by new radio access technologies such as 5G NR. Two integrated objectives will be pursued: 1) Learning-aided distributed estimation in networked systems; and 2) Development of distributed learning control algorithms. The result will be design of a scalable and resilient distributed framework for connected ADS and intelligent transportation without requiring the exact global system model to be known to the subsystem nodesoffering potential breakthroughs in the distributed system's learning and control capacity. The team will also train the next generation of innovators for Canada's intelligent transportation industry.
现代联网车辆系统正在利用互联技术的进步来推动全球主要市场的创新。例如,智能交通将车辆和基础设施连接起来,可显着提高燃油效率(高达 22%)和乘客安全(冬季事故减少 25%),是世界上增长最快的行业之一。然而,在这些复杂的互连系统中,用于数据融合、估计和控制的传统集中式架构(计算效率)极其低下。集中式系统的灵活性和模块化程度有限,使得网络容易出现故障和干扰,单点故障就可能危及整个系统。基于子控制数据系统的新型网络控制系统通过通信网络交换信息并利用分布式机器学习增强算法,为这些挑战提供了一种有前景的解决方案。 为日益流行的网络物理系统、自动驾驶系统(ADS)和协作车辆提供快速和可重构机制的潜力,凸显了开发更可靠的分布式系统设计的迫切需要。由于此类网络系统日益复杂,当前基于模型的分布式控制方法正在达到其性能极限,从而影响模型的决策预测能力以及系统对意外事件和通信干扰的恢复能力。因此,拟议的研究计划将利用描述每个子系统主要属性的实验数据,为网络车辆系统推进一种新的学习辅助分布式估计和控制平台,这些数据通过这些网络节点的宽带通信(具有高数据速率)提供。 总体长期目标是为网络车辆系统开发一种新的控制和诊断范例,通过控制和学习算法的共同设计来提高可靠性和性能。在接下来的五年中,该团队将通过结合基于模型和学习的结构,利用 5G 等新型无线接入技术提供的更低延迟和更高数据速率,解决核心挑战,使分布式系统在计算上更加高效和可靠。 NR。将追求两个综合目标:1)网络系统中的学习辅助分布式估计; 2)分布式学习控制算法的开发。 其结果将是为连接的 ADS 和智能交通设计一个可扩展且有弹性的分布式框架,而无需子系统节点知道确切的全局系统模型,从而在分布式系统的学习和控制能力方面提供潜在的突破。该团队还将为加拿大智能交通行业培养下一代创新者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hashemi, Ehsan其他文献

Model predictive control of vehicle roll-over with experimental verification
  • DOI:
    10.1016/j.conengprac.2018.04.008
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jalali, Milad;Hashemi, Ehsan;Litkouhi, Bakhtiar
  • 通讯作者:
    Litkouhi, Bakhtiar
Electrically Injected GaN-Based Vertical-Cavity Surface-Emitting Lasers with TiO2 High-Index-Contrast Grating Reflectors
  • DOI:
    10.1021/acsphotonics.9b01636
  • 发表时间:
    2020-04-15
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Chang, Tsu-Chi;Hashemi, Ehsan;Lu, Tien-Chang
  • 通讯作者:
    Lu, Tien-Chang
Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa
  • DOI:
    10.1039/c4ra01047g
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hashemi, Ehsan;Akhavan, Omid;Tayefeh, Aidin Rahim
  • 通讯作者:
    Tayefeh, Aidin Rahim
Enhanced Gene Delivery in Bacterial and Mammalian Cells Using PEGylated Calcium Doped Magnetic Nanograin
  • DOI:
    10.2147/ijn.s228396
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Hashemi, Ehsan;Mahdavi, Hossein;Farmany, Abbas
  • 通讯作者:
    Farmany, Abbas
DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets
  • DOI:
    10.1039/c4ra11458b
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hashemi, Ehsan;Akhavan, Omid;Rahighi, Reza
  • 通讯作者:
    Rahighi, Reza

Hashemi, Ehsan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hashemi, Ehsan', 18)}}的其他基金

Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    RGPIN-2020-05097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
A Human-Robot Visual-Inertial Monitoring System for Discoveries on Safe Human-Autonomy Interactions in Dynamic Environments
人机视觉惯性监测系统,用于发现动态环境中安全的人机自主交互
  • 批准号:
    RTI-2022-00697
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    RGPIN-2020-05097
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    DGECR-2020-00497
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

分布式代理辅助多任务智能优化引导的并行程序路径覆盖低成本测试
  • 批准号:
    62302502
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于分布式鲁棒优化的无人机辅助空地协同边缘计算研究
  • 批准号:
    62202449
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式综合能源微网群参与辅助调频的建模理论与调控机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
面向不确定性的主动配电系统分布式概率预测辅助状态估计研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
机器学习辅助的大规模分布式进化算法及其应用研究
  • 批准号:
    62006124
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
  • 批准号:
    2326559
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    RGPIN-2020-05097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Super-resolution dual-energy dental CT based on distributed x-ray source and photon counting detector
基于分布式X射线源和光子计数探测器的超分辨率双能牙科CT
  • 批准号:
    10258444
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    RGPIN-2020-05097
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    DGECR-2020-00497
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了