NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)

NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)

基本信息

  • 批准号:
    2326559
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop tools for interference management in geolocation applications. The use of Global Navigation Satellite Systems (GNSS) is ubiquitous in civilian, security, and defense applications. As a consequence, the threat of a potential disruption, or even malicious superseding, of GNSS is real and can lead to catastrophic consequences. Therefore, there is a growing need for protecting GNSS against intentional and unintentional interference sources. Particularly, this project investigates a distributed framework to detect and classify threats using hybrid physics- and data-driven models, information which is then used to globally localize the sources of interference. This project is composed of a team of researchers from US and Finland, in a joint effort to advance worldwide security of GNSS against existing threats while providing an excellent opportunity for students to participate in an international project on cutting-edge technologies and methodology development. The team has planned workshops and activities in order to foster a fruitful collaboration between the international research team and students.This project considers problems related to distributed, collaborative learning tasks, where data-driven AI-models are leveraged to augment physics-based solutions for improved capabilities. The specific goals of the project are divided into three research goals. The first goal investigates the use of deep learning for detection/classification of interference and fusion of multiple correlated classifiers providing local threat detection probabilities. The second goal aims to localize and track the interference sources through the creation of global threat probability maps. This goal is achieved by advancing the field federated learning in a threefold way: (i) to efficiently digesting non-independent and identically distributed data; (ii) combining with active learning methods, whereby moving agents sample specific locations to improve estimation performance; and (iii) investigating federated meta-learning strategies that use task-level knowledge to improve global learning. The third goal of the project investigates the use of those global threat maps to mitigate their effects on collaborative receivers using robust factor graph optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是开发地理定位应用中的干扰管理工具。全球导航卫星系统 (GNSS) 在民用、安全和国防应用中无处不在。因此,GNSS 潜在中断甚至恶意取代的威胁是真实存在的,并可能导致灾难性后果。因此,越来越需要保护 GNSS 免受有意和无意的干扰源的影响。特别是,该项目研究了一个分布式框架,使用混合物理和数据驱动模型来检测和分类威胁,然后使用这些信息来全局定位干扰源。该项目由来自美国和芬兰的研究人员团队组成,共同努力提高全球 GNSS 的安全性,抵御现有的威胁,同时为学生提供参与尖端技术和方法开发国际项目的绝佳机会。该团队计划了研讨会和活动,以促进国际研究团队和学生之间的富有成效的合作。该项目考虑与分布式协作学习任务相关的问题,其中利用数据驱动的人工智能模型来增强基于物理的解决方案改进的能力。该项目的具体目标分为三个研究目标。第一个目标研究使用深度学习进行干扰检测/分类以及提供本地威胁检测概率的多个相关分类器的融合。第二个目标是通过创建全球威胁概率图来定位和跟踪干扰源。这一目标是通过以三重方式推进现场联邦学习来实现的:(i)有效消化非独立且同分布的数据; (ii) 与主动学习方法相结合,移动代理对特定位置进行采样以提高估计性能; (iii) 研究使用任务级知识来改善全局学习的联合元学习策略。该项目的第三个目标是研究这些全球威胁地图的使用,通过强大的因子图优化来减轻其对协作接收者的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持。审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pau Closas其他文献

Analyzing the Impact of GNSS Spoofing on the Formation of Unmanned Vehicles Swarms
分析 GNSS 欺骗对无人驾驶车辆群形成的影响
Privacy-Preserving Cooperative GNSS Positioning
隐私保护合作 GNSS 定位

Pau Closas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pau Closas', 18)}}的其他基金

ICASSP 2020 Student Travel Grant. To Be Held in Barcelona Spain, May 4-8, 2020.
ICASSP 2020 学生旅费补助金。
  • 批准号:
    2005106
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
European Signal Processing Conference (EUSIPCO) 2019 Student Travel Grant
欧洲信号处理会议 (EUSIPCO) 2019 年学生旅费补助金
  • 批准号:
    1930231
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Secure and ubiquitous position, navigation and timing
职业:安全且无处不在的位置、导航和授时
  • 批准号:
    1845833
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Securing GNSS-based infrastructures
SaTC:核心:小型:保护基于 GNSS 的基础设施
  • 批准号:
    1815349
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225576
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225575
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了