Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
基本信息
- 批准号:RGPIN-2017-06082
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large quantity of data is collected at regular time intervals such as stock prices or weather measurements of various types. Often inter-related measurements at for the same time unit are available such as with daily stock open, close, high and low prices and such data are examples of multiple time series. Sometimes the spatial dimension also provides important information and space-time statistical models are required.
Daily weather data, which may include maximum and minimum temperature, total precipitation, average humidity and other variables, is an example of a multiple time series which is available at various stations in a region. Future weather scenarios under various possible climate change scenarios generated by the Atmosphere-Ocean coupled Global Circulation Model (AOGCM) are of interest to civil engineers and others in making plans to deal with impact of climate change on existing reservoir systems and important infrastructure. My research will focus on developing space-time statistical models for regional weather station time series and linking these models with the outputs from the AOGCM so that possible future weather scenarios may be simulated for planning purposes. Current widely available PC technology with the freely available programming environment R has already proved successful in my preliminary work with such space-time data.
In addition to these specific time series model building applications, my research will further develop the field of time series analysis. Diagnostic checks for time series are important for understanding possible limitations of the models and also what the effect of possible errors in the model formulation have on predictions and other inferences. Improved diagnostic checks and insights are in development.
Data which vary through many orders of magnitude, such as earthquakes, are often reported on a transformed scale, such as logarithms. There are many other such useful and simplifying transformations that are commonly used in statistical models for time series. For many operational purposes though we need the data in the untransformed domain. My research will develop methods for exact prediction with general loss functions in the untransformed data domain.
Environmental time series, such as water or air quality, are frequently censored due to technological limitations. Exact modelling methods for taking this into account and obtaining optimal predictions are important for agencies that monitor the environment. Our methodology, with examples and freely available software will be published in suitable statistical journals.
High dimensional time series arise in video medical imaging. There are many other examples where it is of interest to train a classifier to predict which of say K possible groups a time series belongs to. This is the time series clustering problem. I will be developing some new tools for time series classification.
定期收集大量数据,例如股票价格或各种类型的天气测量数据。通常可以使用同一时间单位的相互关联的测量,例如每日股票开盘价、收盘价、最高价和最低价,并且此类数据是多个时间序列的示例。有时空间维度也提供了重要信息,需要时空统计模型。
每日天气数据可能包括最高和最低温度、总降水量、平均湿度和其他变量,是在一个地区的各个站点可获得的多个时间序列的示例。土木工程师和其他人对大气-海洋耦合全球环流模型(AOGCM)生成的各种可能的气候变化情景下的未来天气情景感兴趣,以制定应对气候变化对现有水库系统和重要基础设施影响的计划。我的研究重点是开发区域气象站时间序列的时空统计模型,并将这些模型与 AOGCM 的输出联系起来,以便可以模拟未来可能的天气情景以用于规划目的。当前广泛使用的 PC 技术以及免费提供的编程环境 R 已经在我对此类时空数据的初步工作中证明是成功的。
除了这些具体的时间序列模型构建应用之外,我的研究还将进一步发展时间序列分析领域。时间序列的诊断检查对于理解模型可能的局限性以及模型公式中可能的错误对预测和其他推论的影响非常重要。改进的诊断检查和见解正在开发中。
变化多个数量级的数据(例如地震)通常以变换后的尺度(例如对数)来报告。还有许多其他此类有用且简化的转换,通常用于时间序列的统计模型。尽管出于许多操作目的,我们需要未转换域中的数据。我的研究将开发在未转换的数据域中使用一般损失函数进行精确预测的方法。
由于技术限制,水或空气质量等环境时间序列经常受到审查。对于环境监测机构来说,考虑到这一点并获得最佳预测的精确建模方法非常重要。我们的方法论以及示例和免费软件将在合适的统计期刊上发布。
高维时间序列出现在视频医学成像中。还有许多其他示例,其中训练分类器来预测时间序列属于 K 个可能组中的哪一个是有意义的。这就是时间序列聚类问题。我将开发一些用于时间序列分类的新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McLeod, AngusIan其他文献
McLeod, AngusIan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McLeod, AngusIan', 18)}}的其他基金
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Time Series Models: Sparsity, Mis-specification and Forecasting
时间序列模型:稀疏性、错误指定和预测
- 批准号:
RGPIN-2017-06082 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Themes in Time Series Analysis
时间序列分析的主题
- 批准号:
3465-2012 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Themes in Time Series Analysis
时间序列分析的主题
- 批准号:
3465-2012 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Themes in Time Series Analysis
时间序列分析的主题
- 批准号:
3465-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Themes in Time Series Analysis
时间序列分析的主题
- 批准号:
3465-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于吡喃并色烯抗炎先导物Z20系列衍生物设计合成、构效关系研究的鸭抗炎候选药物挖掘
- 批准号:32302931
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚热带常绿阔叶林自然演替系列和人工林多维恢复力的差异及形成机制研究
- 批准号:32371641
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钨青铜型结构系列矿物的晶体结构、晶体化学及新矿物研究
- 批准号:42302042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
领导钦佩型自恋与竞争型自恋对创意过程的影响:基于多过程、多视角、多方法的系列研究
- 批准号:72372151
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
面向吸附分离硼同位素的磁性系列材料的设计与分离机制研究
- 批准号:22378297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
- 批准号:
10643695 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
- 批准号:
10805097 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: