Simulation-based interpretation of spacecraft particle sensor measurements

基于仿真的航天器粒子传感器测量结果解释

基本信息

  • 批准号:
    RGPIN-2018-04956
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Particle sensors such as Langmuir probes or particle imagers, are used in many satellites and laboratory plasma experiments to infer plasma parameters such as the density and temperature. In its simplest form a Langmuir probe consists of an electrode which can be biased to variable voltages, and from which the electric current can be measured. The collected current as a function of bias voltage, the so-called probe characteristic, can then be interpreted on the basis of theoretical or computational models, to yield local plasma parameters. Much work has been done on this topic over nearly a century. Many theoretical, and more recently, several computational models have been developed to describe the response of Langmuir probes in a plasma. In practice however, probe measurements are almost universally interpreted in terms of simplified analytic models capable of producing real time answers in operation mode. Unfortunately these interpretations are notoriously uncertain, with error bars that can be of order 100%. The reason for these large uncertainties comes from the use of idealised models in which only a fraction of the relevant physical processes are taken into account. For example, some models only consider a probe in a stationary unmagnetised plasma, others account for plasma flow but neglect ambient magnetic fields, yet others account for a magnetic field, but ignore plasma flow or other effects such as photoelectron or secondary electron emission. In essentially all cases, plasma is assumed to be spatially uniform, and the presence of nearby satellite or experimental objects and their geometry is ignored. A promising solution to this predicament is to interpret particle sensor measurements on the basis of detailed computer simulations capable of accounting for the multiphysics which characterises plasma-material interaction, while also accounting for the geometry in which measurements are made. This is unfortunately not possible in real time operation mode owing to the time and computational resources required to do such simulations. One practical solution to be explored and developed in this proposed research, is to construct a library or data base for each experiment or space mission to be supported, from which plasma parameters could be inferred using a suitable regression technique. Compared to current practice, the new approach would lead to significant improvements in the accuracy of inferred plasma parameters. The proposed research would concentrate on producing solution libraries for selected spacecraft and experiments, developing, and assessing different regression techniques. An expected outcome of this research is a change of paradigm in the interpretation of sensor measurements, which would then rely on detailed kinetic simulation results rather than on idealised analytic models. This proposal is based on many years of experience in satellite-environment modelling.
粒子传感器(例如朗缪尔探针或粒子成像仪)在许多卫星和实验室等离子体实验中使用,以推断密度和温度等等离子体参数。最简单的朗缪尔探针由一个电极组成,该电极可以偏置到可变电压,并且可以测量电流。然后可以根据理论或计算模型解释收集到的电流作为偏置电压的函数,即所谓的探针特性,以产生局部等离子体参数。近一个世纪以来,人们在这个主题上做了很多工作。许多理论模型和最近的一些计算模型已经被开发出来来描述朗缪尔探针在等离子体中的响应。然而在实践中,探头测量几乎普遍被解释为能够在操作模式下产生实时答案的简化分析模型。不幸的是,这些解释是出了名的不确定,误差线可能达到 100%。造成这些巨大不确定性的原因在于使用了理想化模型,其中仅考虑了相关物理过程的一小部分。例如,一些模型仅考虑静止的未磁化等离子体中的探针,其他模型考虑等离子体流但忽略环境磁场,还有一些模型考虑磁场,但忽略等离子体流或其他效应,例如光电子或二次电子发射。基本上在所有情况下,假设等离子体在空间上是均匀的,并且忽略附近卫星或实验物体及其几何形状的存在。解决这一困境的一个有希望的解决方案是在详细的计算机模拟的基础上解释粒子传感器的测量结果,该模拟能够解释表征等离子体-材料相互作用的多物理场,同时还解释进行测量的几何形状。遗憾的是,由于进行此类模拟所需的时间和计算资源,这在实时操作模式下是不可能的。在这项拟议的研究中要探索和开发的一个实用解决方案是为要支持的每个实验或太空任务构建一个库或数据库,从中可以使用合适的回归技术推断出等离子体参数。与目前的实践相比,新方法将显着提高推断等离子体参数的准确性。拟议的研究将集中于为选定的航天器和实验生成解决方案库,开发和评估不同的回归技术。这项研究的预期结果是传感器测量解释范式的改变,这将依赖于详细的动力学模拟结果而不是理想化的分析模型。该提议基于多年的卫星环境建模经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marchand, Richard其他文献

m-NLP Inference Models Using Simulation and Regression Techniques.
  • DOI:
    10.1029/2022ja030835
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Liu, Guangdong;Marholm, Sigvald;Eklund, Anders J.;Clausen, Lasse;Marchand, Richard
  • 通讯作者:
    Marchand, Richard
Sunlight Illumination Models for Spacecraft Surface Charging
  • DOI:
    10.1109/tps.2017.2703984
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Grey, Stuart;Marchand, Richard;Omar, Roghaiya
  • 通讯作者:
    Omar, Roghaiya

Marchand, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marchand, Richard', 18)}}的其他基金

Simulation-based interpretation of spacecraft particle sensor measurements
基于仿真的航天器粒子传感器测量结果解释
  • 批准号:
    RGPIN-2018-04956
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based interpretation of spacecraft particle sensor measurements
基于仿真的航天器粒子传感器测量结果解释
  • 批准号:
    RGPIN-2018-04956
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based interpretation of spacecraft particle sensor measurements
基于仿真的航天器粒子传感器测量结果解释
  • 批准号:
    RGPIN-2018-04956
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based interpretation of spacecraft particle sensor measurements
基于仿真的航天器粒子传感器测量结果解释
  • 批准号:
    RGPIN-2018-04956
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft-environment interaction modelling.
航天器-环境交互建模。
  • 批准号:
    38596-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft-environment interaction modelling.
航天器-环境交互建模。
  • 批准号:
    38596-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft-environment interaction modelling.
航天器-环境交互建模。
  • 批准号:
    38596-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft-environment interaction modelling.
航天器-环境交互建模。
  • 批准号:
    38596-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft-environment interaction modelling.
航天器-环境交互建模。
  • 批准号:
    38596-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling of near earth plasma
近地等离子体建模
  • 批准号:
    38596-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于消解证明的不完全知识推理可解释性研究及应用
  • 批准号:
    62376066
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度解耦表征学习的流程工业质量预报与可解释性研究
  • 批准号:
    62303146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态数据的事件驱动旅游企业未来价值可解释动态集成预测
  • 批准号:
    42371186
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
书写影响汉语发展性阅读障碍的认知神经机制:基于书写运动解码系统的解释
  • 批准号:
    32360207
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Understanding the Drivers of Antibiotic use in the Treatment of Childhood Diarrhea and Relationship to Antibiotic Resistance in China
了解中国儿童腹泻治疗中抗生素使用的驱动因素及其与抗生素耐药性的关系
  • 批准号:
    10688168
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Prevention of Hepatocellular Carcinoma Related to Metabolic Syndrome
预防与代谢综合征相关的肝细胞癌
  • 批准号:
    10410749
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Understanding the Drivers of Antibiotic use in the Treatment of Childhood Diarrhea and Relationship to Antibiotic Resistance in China
了解中国儿童腹泻治疗中抗生素使用的驱动因素及其与抗生素耐药性的关系
  • 批准号:
    10370831
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了