Understanding the Drivers of Antibiotic use in the Treatment of Childhood Diarrhea and Relationship to Antibiotic Resistance in China
了解中国儿童腹泻治疗中抗生素使用的驱动因素及其与抗生素耐药性的关系
基本信息
- 批准号:10370831
- 负责人:
- 金额:$ 13.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse eventAffectAgeAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAreaAutomobile DrivingBacterial Drug ResistanceBehavioralCaregiversCharacteristicsChildChildhoodChinaClinicClinicalCommunitiesComplexCountryDataData AnalysesDevelopmentDiagnosticDiarrheaDiseaseDisease ResistanceDrug toxicityEconomicsEffectivenessEpidemiologyEquilibriumExposure toFaceFecesFutureGoalsHealth systemHouseholdImmune systemImprove AccessIncentivesIncomeIndividualInfectious Disease EpidemiologyInterventionKnowledgeLeadLearningLinkMachine LearningMentored Research Scientist Development AwardMentorsModelingMortality DeclineNatureOralOutcomes ResearchParentsPatientsPharmacistsPharmacy facilityPoliciesPopulationPositioning AttributePrevalenceProviderPsychological reinforcementQuality of CareRapid diagnosticsRehydrationsResearchResearch ActivityResistanceResistance developmentRuralSeriesSideSocial SciencesSourceStandardizationStatistical Data InterpretationSuperbugSurveysSystemTechniquesTestingTimeTrainingTraining ActivityUnited States National Institutes of HealthUrsidae FamilyWorkanalytical toolbacterial resistancebasebehavioral responsecareercommunity settingcommunity-level factorcostdesigndevelopment policydiarrheal diseaseeffective interventionexperienceexperimental studyglobal healthgut microbiotahealth care qualityhealth seeking behaviorinfectious disease modelinsightlow and middle-income countriesmodels and simulationpopulation basedpreventprogramssimulationsocial
项目摘要
ABSTRACT
By the age of 5, children in low and middle-income countries (LMICs) are exposed to nearly five times more
antibiotics than high-income country children. Although improved access to antibiotics has been a major driver
of mortality declines, most antibiotics administered to children are clinically unnecessary. Excessive use can
lead to adverse events, drug toxicity, and harm the gut microbiota and immune system. It also contributes to
antimicrobial resistance (AMR), the costs of which are disproportionately borne by children in LMICs. Although
widespread clinically unnecessary use of antibiotics in LMICs is well-documented, substantial knowledge gaps
remain regarding the drivers of overuse among children and how these are linked to the dynamics of
resistance and disease. This knowledge is required to design policies and interventions that appropriately
balance access and overuse. This K01 Award proposal focuses on identifying incentives that caregivers and
providers face to treat children with antibiotics and how these are related to the development of resistance. My
career goal is to become independent scholar working at the intersection of economics and infectious disease
epidemiology with a focus on research to inform AMR policies in LMICs. The proposed training activities build
on my background as an economist and experience conducting population-based experimental research with
further training in infectious disease epidemiology, the biomedical underpinnings of antimicrobial resistance,
machine learning techniques, and agent-based modeling of infectious disease and social systems. Aligned
with my training goals, my research program aims to integrate concepts from economics and infectious
disease epidemiology and to use state-of-the-art machine learning approaches to examine the complex
relationship between factors driving demand for antibiotics, disease, and the development of resistance. To do
so, I will draw on existing micro-level data from a survey of clinicians and households across 360 rural villages
in southwest China as well as new experimental data on the prescription practices of clinicians and
pharmacists in the same area. My specific research aims are 1) to experimentally evaluate the prescribing
practices of clinicians and pharmacists for pediatric diarrhea cases; 2) to estimate the influence of clinician
advice on antibiotic use in children, and how this varies with patient, clinician, and community characteristics;
and 3) to develop an agent-based model of health-seeking behavior, antibiotic use, and bacterial resistance for
pediatric diarrhea cases in rural China and use this model to conduct counterfactual simulations to prioritize
interventions for future study. My mentoring team has specialized training in infectious disease epidemiology,
the epidemiology of antimicrobial resistance, machine learning, and agent-based modeling as well as
experience leading interdisciplinary teams. This research will generate new insights that can inform policies to
better balance access to antibiotics and overuse. The training and research proposed in this K01 award will
support the development of future R-level proposals to study the design of AMR policies in LMICs.
抽象的
到5岁时,低收入和中等收入国家(LMIC)的儿童接触了近五倍
抗生素比高收入乡村儿童。尽管改善了抗生素的机会是主要驱动力
死亡率下降,对儿童的大多数抗生素在临床上是不必要的。过度使用可以
导致不良事件,药物毒性并损害肠道菌群和免疫系统。它也有助于
抗菌素耐药性(AMR),其成本是由LMIC的儿童承担的。虽然
在LMIC中,广泛的临床不必要使用抗生素是有据可查的,很大的知识差距
关于儿童过度使用的驱动因素以及它们如何与动态有关
抵抗和疾病。需要这些知识来设计适当的政策和干预措施
平衡访问权限和过度使用。该K01奖励提案的重点是确定照顾者和
提供者面对治疗抗生素的儿童以及与抗药性的发展如何相关的儿童。我的
职业目标是成为经济学和传染病交集的独立学者
流行病学的重点是为LMIC的AMR政策提供信息。拟议的培训活动建设
在我作为经济学家的背景下,并经验进行基于人群的实验研究
进一步的传染病流行病学培训,抗菌素耐药性的生物医学基础,
机器学习技术以及基于代理的传染病和社会系统的建模。对齐
有了我的培训目标,我的研究计划旨在整合经济学和传染性的概念
疾病流行病学并使用最先进的机器学习方法检查复合物
推动抗生素,疾病和抗药性发展的因素之间的关系。做
因此,我将从360个农村村庄的临床医生和家庭调查中获取现有的微观数据
在中国西南部以及有关临床医生处方惯例的新实验数据和
同一地区的药剂师。我的具体研究目的是1)实验评估处方
小儿腹泻病例的临床医生和药剂师的实践; 2)估计临床医生的影响
有关儿童抗生素使用的建议,以及这与患者,临床医生和社区特征有何不同;
3)开发一种基于代理的寻求健康行为,抗生素使用和细菌抗性的模型
中国农村地区的小儿腹泻病例,并使用此模型进行反事实模拟以优先考虑
未来研究的干预措施。我的指导团队接受了传染病流行病学专业培训,
抗菌素耐药性,机器学习和基于代理的建模的流行病学以及
经验领先的跨学科团队。这项研究将产生新的见解,可以告知政策
更好地平衡获得抗生素的机会和过度使用。该K01奖提出的培训和研究将
支持未来R级建议的发展,以研究LMIC中AMR政策的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Y Sylvia其他文献
Sean Y Sylvia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Y Sylvia', 18)}}的其他基金
Understanding the Drivers of Antibiotic use in the Treatment of Childhood Diarrhea and Relationship to Antibiotic Resistance in China
了解中国儿童腹泻治疗中抗生素使用的驱动因素及其与抗生素耐药性的关系
- 批准号:
10688168 - 财政年份:2022
- 资助金额:
$ 13.19万 - 项目类别:
相似国自然基金
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
- 批准号:82370513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于真实世界数据的药物相互作用相关不良事件风险评估及其管理策略研究
- 批准号:72304010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
- 批准号:
10674401 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Neuromodulation for impulsivity and suicidality in Veterans with mildtraumatic brain injury and common co-occurring mental health conditions
神经调节对患有轻度脑损伤和常见并发心理健康状况的退伍军人的冲动和自杀倾向
- 批准号:
10640567 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
- 批准号:
10722943 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别: