Shape-transforming Mechanical Metamaterials

变形机械超材料

基本信息

  • 批准号:
    RGPIN-2017-04641
  • 负责人:
  • 金额:
    $ 4.81万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Can a rigid objet wrap around a ball without bending and stretching? Can a flat sheet be transformed into a three-dimensional device that can take any force applied to it? And can this 3D shape be reversibly ironed back to the original sheet without damage? In current materials, we find no answer. In contrast, products that can stretch and fold, pack and unpack, as well as change drastically volume and shape are sought in a manifold of applications. Deployable solar panels, for example, are just one of them, but many others exist across disciplines and length scale, all chasing the Holy Grail of material science and engineering: “materials that can shape-transform to work in diverse configurations”. The vision of this research program is to introduce the next generation of materials, extremely innovative because capable to shape transform themselves and do what current ones cannot. Three complementary tracks, propelled through a combined approach of theory, simulations and experiments on fabricated proof-of-concept prototypes, will unfold in the next five years to generate first-class shape transforming materials. The distinctive trait is their architecture, which stands out as patterns of slits and pores. The unified motif of this program is that by rationally designing their geometry, tessellation and overall architecture, we will elicit unprecedented functionalities in monolithic materials, enabling them to dynamically transform their shape, and properly tune their function to adapt to the environment. These capabilities will fill unmet demands currently existing in the Canadian industry producing energy storage systems, smart windows, stretchable electronics and flexible display screens, wearable devices, furniture assembly, and miniaturized optics for sensing and imaging. The empowering force that will drive this program to innovation is a well-defined plan with complementary and interrelated tracks carried out by a pool of students joining forces cohesively in the next five years. Upon graduation, these students will have received cutting-edge know-how in multiscale mechanics, geometry tailoring, and structural optimization of architected materials, along with the relevant means to fabricate and test them. This is a blend of expertise that it is highly sought in the Canadian industry currently looking to solve long-standing problems of superflexibility, packing and reconfigurability, unmatched functionalities chased across discipline. The HQP trained in this program will pave the way to and ultimately usher in a new era of material innovation that will contribute to propel the formation of Canadian companies, with new jobs and economic profits for Canada.
刚性物体可以在不弯曲和拉伸的情况下包裹在球上吗?能否将平板转变为可以承受施加在其上的任何力的三维装置?并且可以将这种 3D 形状可逆地熨回到原始薄片而不损坏吗?相比之下,在目前的材料中,我们找不到答案,例如,可拉伸和折叠、包装和打开以及可显着改变体积和形状的产品只是其中之一。他们,但是还有许多跨学科和跨长度尺度的材料,都在追逐材料科学和工程的圣杯:“可以变形以在不同配置中工作的材料”。 该研究计划的愿景是推出下一代材料,这种材料极具创新性,能够自我改造,并通过理论、模拟和实验的组合方法推动现有材料无法做到的事情。 -概念原型,将在未来五年内开发出一流的形状转换材料,其独特的特征是其结构,以狭缝和孔隙的图案而引人注目。该项目的统一主题是通过合理设计其几何形状。 、镶嵌和在整体架构中,我们将提高整体材料的功能,使它们能够动态改变其形状,并适当调整其功能以适应环境。这些功能将满足加拿大能源存储系统、智能窗户行业目前存在的未满足的需求。 、可拉伸电子产品和柔性显示屏、可穿戴设备、家具组装以及用于传感和成像的微型光学器件。 推动该项目创新的动力是一个明确的计划,由一群学生在未来五年内团结一致执行,该计划具有互补性和相互关联性,毕业后,这些学生将获得尖端知识。如何在多尺度力学、几何剪裁和建筑材料的结构优化方面,以及制造和测试它们的相关方法,这是目前寻求解决长期存在的问题的加拿大行业所高度寻求的专业知识的融合。超柔韧性、包装和在该项目中培训的总部人员将为材料创新的新时代铺平道路,并最终开创材料创新的新时代,这将有助于推动加拿大公司的形成,为加拿大带来新的就业机会和经济利润。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pasini, Damiano其他文献

Genetic Deletion of Menin in Mouse Mesenchymal Stem Cells: An Experimental and Computational Analysis.
  • DOI:
    10.1002/jbm4.10622
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Abi-Rafeh, Jad;Asgari, Meisam;Troka, Ildi;Canaff, Lucie;Moussa, Ahmed;Pasini, Damiano;Goltzman, David
  • 通讯作者:
    Goltzman, David

Pasini, Damiano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pasini, Damiano', 18)}}的其他基金

Mechanical Metamaterials
机械超材料
  • 批准号:
    CRC-2020-00080
  • 财政年份:
    2022
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Canada Research Chairs
Mechanical Metamaterials
机械超材料
  • 批准号:
    CRC-2020-00080
  • 财政年份:
    2022
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Canada Research Chairs
Reconfigurable Mechanical Metamaterials
可重构机械超材料
  • 批准号:
    CRC-2020-00080
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Canada Research Chairs
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Reconfigurable Mechanical Metamaterials
可重构机械超材料
  • 批准号:
    CRC-2020-00080
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Canada Research Chairs
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    507986-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    507986-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
  • 批准号:
    22372140
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
  • 批准号:
    32300466
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于巨噬细胞表型转变探讨BTSA1诱导衰老肌成纤维细胞凋亡及促肺纤维化消退的机制
  • 批准号:
    82370077
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
近生理条件下DNA分子磁性转变机制研究及磁分离技术开发
  • 批准号:
    52377228
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
东南欧古-新特提斯转变构造-岩浆过程及动力学
  • 批准号:
    42320104007
  • 批准年份:
    2023
  • 资助金额:
    209 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Cyclic stretch of bicuspid aortic valves: elucidating its implications for cell signaling and tissue mechanics.
二叶式主动脉瓣的循环拉伸:阐明其对细胞信号传导和组织力学的影响。
  • 批准号:
    10607130
  • 财政年份:
    2023
  • 资助金额:
    $ 4.81万
  • 项目类别:
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    RGPIN-2017-04641
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    507986-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Shape-transforming Mechanical Metamaterials
变形机械超材料
  • 批准号:
    507986-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了