Precision measurements using atoms and molecules
使用原子和分子进行精确测量
基本信息
- 批准号:RGPIN-2016-06447
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humankind has observed the sky for centuries, but an entire universe of phenomena is invisible to our electromagnetic eyes and telescopes. Every massive object in the universe radiates gravitational waves, which can carry information to us from the far corners of the universe. Yet, this gravitational universe remains hidden from view, and awaits the development of instruments precise enough to detect the feeble spacetime fluctuations caused by gravitational waves. The proposed research program aims to construct precise atomic tools to enable the development of gravitational wave telescopes and other precision instruments.
Atoms and molecules are the most precise physical tools available to us. Their quantum states can be exquisitely controlled, which allows them to be used as oscillators with extremely regular frequencies such atomic frequency references are electromagnetic “tuning forks”. Just as a humble set of tuning forks is vital to the performance of a complex orchestral symphony, electromagnetic frequency references are essential for the performance of many modern technological tasks, including communication, radio ranging and navigation. These stable oscillators provide sets of evenly spaced ticks, which can also be used to measure the distortions of spacetime caused by passing gravitational waves. Our research program aims to construct novel frequency references that are robust and portable, and can be used as the building blocks of precision instruments. The frequency references developed in this research program will provide stable markers at optical and terahertz frequencies, which can be used for improved time-keeping, accurate satellite ranging, and in the next generation of communications technologies. The research program will train undergraduates, graduate students, and postdocs for leadership positions in the high-technology industry, where they will be able to leverage their experience with precision measurements.
To gravitationally observe the most distant objects in the universe, ever more precise atomic frequency references are needed. The path to improved precision is through the use of quantum entanglement, where an entire ensemble of thousands of atoms can behave as one correlated quantum system. Measurements with improved precision can be made using such entangled ensembles, without the noise that arises from uncorrelated fluctuations of individual atoms and molecules. Our long-term goal is to investigate the use of quantum entanglement to build atomic and molecular frequency references with enhanced performance. This will also open up ways to use atoms and molecules for stringent tests of fundamental physical theories such as quantum electrodynamics, probing for cracks in the structure of these theories that would signal the onset of new and unknown physics.
人类对天空的观察已经有几个世纪了,但是我们的电磁眼和望远镜是看不到整个宇宙的现象的。宇宙中的每一个巨大物体都会辐射引力波,这些引力波可以从宇宙的遥远角落向我们传递信息。引力宇宙仍然隐藏在视野之外,等待着足够精确的仪器的发展,以探测引力波引起的微弱时空波动。拟议的研究计划旨在构建精确的原子工具,以促进引力的发展。波动望远镜和其他精密仪器。
原子和分子是我们可用的最精确的物理工具,它们的量子态可以被精确地控制,这使得它们可以用作具有极其规则频率的振荡器,例如原子频率参考,就像一组不起眼的“音叉”一样。音叉对于复杂管弦乐的演奏至关重要,电磁频率参考对于许多现代技术任务的性能至关重要,包括通信、无线电测距和导航。这些稳定的振荡器提供了均匀的频率。间隔刻度,也可用于测量由通过的引力波引起的时空扭曲。我们的研究计划旨在构建坚固且便携的新型频率参考,并可用作精密仪器的构建块。该研究项目中开发的技术将提供光学和太赫兹频率的稳定标记,可用于改进计时、精确的卫星测距以及下一代通信技术。该研究项目将培训本科生、研究生和博士后。担任领导职务高科技行业,他们将能够利用他们在精密测量方面的经验。
为了对宇宙中最遥远的物体进行引力观测,需要更精确的原子频率参考,提高精度的途径是使用量子纠缠,其中数千个原子的整个集合可以表现为一个相关的量子系统。我们的长期目标是研究使用量子纠缠来构建具有增强性能的原子和分子频率参考。还开辟了使用原子和分子对量子电动力学等基础物理理论进行严格测试的方法,探索这些理论结构中的裂缝,这些裂缝将标志着新的未知物理学的开始。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vutha, Amar其他文献
Vutha, Amar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vutha, Amar', 18)}}的其他基金
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
- 批准号:
RGPAS-2021-00001 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
- 批准号:
SAPIN-2021-00025 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Subatomic Physics Envelope - Individual
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
- 批准号:
SAPPJ-2019-00057 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Subatomic Physics Envelope - Project
Precision Atomic & Molecular Physics
精密原子
- 批准号:
CRC-2020-00016 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Canada Research Chairs
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
- 批准号:
SAPIN-2021-00025 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Subatomic Physics Envelope - Individual
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
- 批准号:
SAPPJ-2019-00057 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Subatomic Physics Envelope - Project
Precision Atomic And Molecular Physics
精密原子和分子物理
- 批准号:
CRC-2020-00016 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Canada Research Chairs
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
- 批准号:
RGPAS-2021-00001 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Precision Atomic and Molecular Physics
精密原子和分子物理
- 批准号:
1000231138-2015 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Canada Research Chairs
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
- 批准号:
SAPPJ-2019-00057 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Subatomic Physics Envelope - Project
相似国自然基金
使用机器学习自动设计测量设备无关量子密钥分配协议
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用随机测量的对抗情景与测量设备无关情景的的纠缠验证
- 批准号:62205326
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
使用时间投影室测量硼-10三体核反应的方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于VR环境情绪测量的机构养老设施空间效能优化设计研究
- 批准号:51908301
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于扩散过程的退化数据建模及应用研究
- 批准号:71871191
- 批准年份:2018
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Precision Measurements Using Nonlinear Thomson Scattering
使用非线性汤姆逊散射进行精密测量
- 批准号:
2207737 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
Tests of fundamental physics using precision measurements of simple atomic systems
使用简单原子系统的精密测量进行基础物理测试
- 批准号:
RGPIN-2018-05864 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Quantum photonic sensors: enabling measurements with unprecedented precision using entangled photons
量子光子传感器:使用纠缠光子实现前所未有的精确测量
- 批准号:
576210-2022 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
High Precision Measurements of Beta Decay Using Neutron Beams and Ultracold Neutrons
使用中子束和超冷中子高精度测量 β 衰变
- 批准号:
2209590 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
Tests of fundamental physics using precision measurements of simple atomic systems
使用简单原子系统的精密测量进行基础物理测试
- 批准号:
RGPIN-2018-05864 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual