Noncommutative Algebraic Geometry
非交换代数几何
基本信息
- 批准号:RGPIN-2017-04623
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is the study of solution spaces of polynomials in several variables. This includes the geometry of familiar shapes like parabolas, spheres, and curves in the plane defined by a polynomial. One tries to study the solutions by relating them to other spaces via mappings or parametrizations. This subject is highly controlled by the algebra of polynomials. Geometric statements about the space of solutions correspond directly to algebraic statements about the polynomial equations one is solving.
In noncommutative algebra, applying operations in different orders can yield different results. For example, putting on one's shoes and then putting on one's socks is not the same as doing it in the conventional order. More formally, we have that x times y is not necessarily equal to y times x. Noncommutative algebra, just as in the study of the algebra of polynomials, is often motivated by geometric problems and intuition. In this setting, the field is called noncommutative algebraic geometry and it uses the techniques and ideas of (commutative) algebraic geometry applied to noncommutative algebra. For example, we may try to solve noncommutative equations with matrices and try to understand that space of solutions. More concretely, the equation yx-xy=1, which describes the quantum mechanical relation between position and momentum, has no matrix solutions, but the equation yx+xy=0 has many. In general, an important goal of noncommutative algebraic geometry is to understand the space of solutions to polynomial equations where the variables need not commute. In addition to having immediate applications in noncommutative algebra, there are applications to algebraic geometry and physics.
The proposed research is to study orders over varieties. These are noncommutative algebras where we combine the varieties described by polynomials and matrices. An order will give us an algebra of matrices whose entries are polynomials. Since our matrices are of some fixed finite size, there is much interaction with usual algebraic geometry. This allows us to extend deep non-trivial results to the noncommutative setting. One central problem in algebraic geometry is classification. We propose to extend what is known of classification in one and two dimensions to higher dimensions. We also are proposing to study regular algebras and singularities of algebras. A variety is regular if it has no bumps or kinks called singularities.
This requires the work of undergraduate and graduate students, and postdoctoral fellows. They develop technical expertise in algebra and computation and will learn how to collaborate, disseminate results, and solve multi-layered technical problems. Their highly developed skill sets will make them valuable additions to academic research in various fields, or allow them to work in industry in diverse areas such as cryptography, or coding.
代数几何是对多个变量多项式解空间的研究。这包括熟悉形状的几何形状,如抛物线、球体和由多项式定义的平面中的曲线。人们试图通过映射或参数化将解决方案与其他空间联系起来来研究解决方案。这门学科高度受多项式代数控制。关于解空间的几何陈述直接对应于关于正在求解的多项式方程的代数陈述。
在非交换代数中,以不同顺序应用运算可能会产生不同的结果。例如,先穿鞋再穿袜子,这与传统的顺序不同。更正式地说,x 乘以 y 不一定等于 y 乘以 x。非交换代数,就像多项式代数的研究一样,通常是由几何问题和直觉激发的。在这种情况下,该领域称为非交换代数几何,它使用应用于非交换代数的(交换)代数几何的技术和思想。例如,我们可能尝试用矩阵求解非交换方程,并尝试理解解的空间。更具体地说,描述位置和动量之间的量子力学关系的方程 yx-xy=1 没有矩阵解,但方程 yx+xy=0 有很多矩阵解。一般来说,非交换代数几何的一个重要目标是理解变量不需要交换的多项式方程的解空间。除了在非交换代数中的直接应用之外,在代数几何和物理学中也有应用。
拟议的研究是研究品种的顺序。这些是非交换代数,我们将多项式和矩阵描述的种类结合起来。阶数将为我们提供一个矩阵代数,其条目是多项式。由于我们的矩阵具有固定的有限大小,因此与通常的代数几何有很多相互作用。这使我们能够将深入的非平凡结果扩展到非交换设置。 代数几何的核心问题之一是分类。我们建议将已知的一维和二维分类扩展到更高的维度。我们还建议研究正则代数和代数奇点。如果一个变体没有称为奇点的凹凸或扭结,那么它就是规则的。
这需要本科生、研究生以及博士后的工作。 他们发展代数和计算方面的技术专业知识,并将学习如何协作、传播结果和解决多层技术问题。 他们高度发达的技能将使他们成为各个领域学术研究的宝贵补充,或者使他们能够在密码学或编码等不同领域的工业界工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ingalls, Colin其他文献
Definite orthogonal modular forms: computations, excursions, and discoveries
定正交模形式:计算、游览和发现
- DOI:
10.1007/s40993-022-00373-2 - 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Assaf, Eran;Fretwell, Dan;Ingalls, Colin;Logan, Adam;Secord, Spencer;Voight, John - 通讯作者:
Voight, John
Period-index bounds for arithmetic threefolds
算术三倍的周期索引界限
- DOI:
10.1007/s00222-019-00860-x - 发表时间:
2019-05 - 期刊:
- 影响因子:3.1
- 作者:
Antieau, Benjamin;Auel, Asher;Ingalls, Colin;Krashen, Daniel;Lieblich, Ma - 通讯作者:
Lieblich, Ma
Ingalls, Colin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ingalls, Colin', 18)}}的其他基金
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Verifying engineering systems using satisfiability modulo theories
使用可满足性模理论验证工程系统
- 批准号:
536684-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Engage Plus Grants Program
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Verifying engineering systems using satisfiability modulo theories
使用可满足性模理论验证工程系统
- 批准号:
536684-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
和算代数化几何及其中算源流研究
- 批准号:12371001
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
特征为正的多元zeta函数值:Hopf代数结构的研究及其欧拉性相关猜想的证明与应用
- 批准号:12301015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于表示无限型自入射代数上的单纯系统的研究
- 批准号:12301044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数群的表示理论及其在Siegel模形式上的应用
- 批准号:12301016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual