Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry

非交换代数及其与代数和算术几何的相互作用

基本信息

  • 批准号:
    2101761
  • 负责人:
  • 金额:
    $ 31.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The fruitful interactions between mathematics and theoretical physics have resulted in increased interest in noncommutative algebras. Noncommutative algebras have similarities with more familiar constructs, like polynomials, but a key difference is that the order of multiplication matters. There is a symbiotic relationship between noncommutative algebras and algebraic geometry, which is the study of shapes of solutions to polynomial equations. Noncommutative algebras can be studied using sophisticated methods of algebraic geometry and, conversely, have been used to answer questions in algebraic geometry. In addition, the interactions between the two areas have potential applications in physics and in error correcting codes. The subject of noncommutative algebraic geometry has been progressing rapidly, and this project further develops some deep algebraic and arithmetic aspects of specific classes of noncommutative algebras and related algebraic geometry. The project also involves training of graduate students, providing them with ample opportunities for research in the coming years.The unifying theme of the research projects is noncommutative algebras and their interactions with algebraic and arithmetic geometry. The motivating questions arise primarily from noncommutative algebras and the techniques utilized in their exploration range from algebra to algebraic and arithmetic geometry. The first project investigates noncommutative algebras called maximal orders. These are coherent sheaves of algebras whose generic stalk is a central simple algebra. The project involves studying birational classification of maximal orders on algebraic varieties in arbitrary dimensions using the pluri-canonical map and the Kodaira dimension, the derived categories of certain orders called the del Pezzo orders, and the ramification of maximal orders in characteristic p. The second project focuses on investigating moduli stack of genus 1 curves using Brauer groups of their Jacobian curves, studying unramified Brauer classes on projective varieties and their representation by Azumaya algebras, and further developing the construction of abelian varieties associated to Clifford algebras. The third project concerns Ulrich bundles on smooth projective varieties and representations of Clifford algebras. The project uses representations of Clifford algebras in exploration of existence of Ulrich bundles on smooth projective varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学和理论物理之间富有成效的相互作用导致人们对非交换代数的兴趣增加。非交换代数与更熟悉的结构(如多项式)有相似之处,但关键的区别在于乘法的顺序很重要。 非交换代数和代数几何之间存在共生关系,代数几何是对多项式方程解的形状的研究。 非交换代数可以使用代数几何的复杂方法来研究,相反,也可以用来回答代数几何中的问题。 此外,这两个领域之间的相互作用在物理学和纠错码中具有潜在的应用。非交换代数几何学科一直在快速发展,该项目进一步发展了特定类别的非交换代数和相关代数几何的一些深层代数和算术方面。该项目还涉及研究生培训,为他们在未来几年提供充足的研究机会。研究项目的统一主题是非交换代数及其与代数和算术几何的相互作用。激发问题主要来自非交换代数及其探索中使用的技术,范围从代数到代数和算术几何。第一个项目研究称为最大阶的非交换代数。这些是连贯的代数层,其通用茎是中心简单代数。该项目涉及使用多正则映射和 Kodaira 维数研究任意维度代数簇上最大阶的双有理分类、称为 del Pezzo 阶的某些阶的派生类别,以及特征 p 中最大阶的分支。第二个项目的重点是使用雅可比曲线的布劳尔群来研究属 1 曲线的模堆栈,研究射影簇的无分支布劳尔类及其用 Azumaya 代数表示,并进一步发展与 Clifford 代数相关的阿贝尔簇的构造。第三个项目涉及平滑射影簇和 Clifford 代数表示的 Ulrich 丛。 该项目使用 Clifford 代数的表示来探索平滑射影簇上乌尔里希丛的存在。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Kulkarni其他文献

Integration of artificial intelligence activities in software development processes and measuring effectiveness of integration
将人工智能活动集成到软件开发过程中并测量集成的有效性
  • DOI:
    10.1049/iet-sen.2016.0095
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajesh Kulkarni;P. Padmanabham
  • 通讯作者:
    P. Padmanabham
Resurgence of respiratory syncytial virus infection during COVID-19 pandemic in Pune, India
印度浦那 COVID-19 大流行期间呼吸道合胞病毒感染卷土重来
  • DOI:
    10.1186/s12879-024-09426-6
  • 发表时间:
    2024-06-14
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Bhardwaj;M. Choudhary;Mandeep S. Chadha;A. Kinikar;Ashish Bavdekar;Nilesh Gujar;Pradeep dcosta;Rajesh Kulkarni;Sanjay Bafna;Sonali Salvi;V. Padbidri;Varsha Potdar
  • 通讯作者:
    Varsha Potdar
Coronavirus disease 2019 pneumonia with acute respiratory distress syndrome in a child requiring prolonged mechanical ventilation: A case report
2019冠状病毒病肺炎伴急性呼吸窘迫综合征,需要长时间机械通气的儿童:病例报告
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shraddha Sunthwal;Sagar S. Lad;Sanjay Bafna;Rajesh Kulkarni;Preeti Lad;Salma Ahmadi;R. Ganacharya
  • 通讯作者:
    R. Ganacharya
Critical Review of Extended Waterfall Model
扩展瀑布模型的批判性评论
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajesh Kulkarni;P.Padmanabham;K.K.Baseer
  • 通讯作者:
    K.K.Baseer
Relevance- and Frequency-Enabled Trip Planning Model Based on Socio-economic Status
基于社会经济状况的相关性和频率启用的旅行规划模型
  • DOI:
    10.1515/jisys-2016-0012
  • 发表时间:
    2017-07-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
    An;Sesham;P. Padmanabham;A. Govardhan;Rajesh Kulkarni
  • 通讯作者:
    Rajesh Kulkarni

Rajesh Kulkarni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Kulkarni', 18)}}的其他基金

Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    1305377
  • 财政年份:
    2013
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Continuing Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    1004306
  • 财政年份:
    2010
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    0603684
  • 财政年份:
    2006
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
  • 批准号:
    0202295
  • 财政年份:
    2002
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant
Interactions between Algebra, Algebraic Geometry and Topology
代数、代数几何和拓扑之间的相互作用
  • 批准号:
    0311850
  • 财政年份:
    2002
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant

相似国自然基金

代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丛代数的范畴化与散射图方法
  • 批准号:
    12301048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Hopf代数方法的有限张量范畴对偶不变量的研究
  • 批准号:
    12301049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
和算代数化几何及其中算源流研究
  • 批准号:
    12371001
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
  • 批准号:
    2888102
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Studentship
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了