Detecting similarities and conflicts in software requirements

检测软件需求中的相似性和冲突

基本信息

  • 批准号:
    543936-2019
  • 负责人:
  • 金额:
    $ 4.95万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Requirements are written in natural language and hence are subject to ambiguity, vagueness, and subjectivity. They are not always clear and coherent. They may also contain many duplicates and/or conflicting information. Automated solutions use information retrieval and machine learning techniques to capture such anomalies; however, current techniques ignore the semantics of the software artifacts or ignore integrating domain knowledge into this process and therefore tend to deliver imprecise and inaccurate results. In this research project, we would like to propose a solution that uses deep learning to incorporate requirements artifact semantics and domain knowledge into consideration. Our aim is to capture conflicting and duplicate requirements as accurately and timely as possible. We propose a network architecture that utilizes Word Embedding and Convolutional Neural Network (CNN) models to generate links. Word embedding learns word vectors that represent knowledge of the domain corpus and CNN uses these word vectors to learn the sentence semantics of requirements artifacts. We will build baseline methods using the Vector Space Model and Latent Semantic Indexing to compare and comply our proposed model with the state-of-the-art models as well as Watson Discovery. We will use datasets from DOORS Next Generation requirements. Our proposed model could further be extended to build the links between design requirements and source code to enable having a full traceability matrix.
需求是用自然语言编写的,因此可能存在歧义、模糊性和主观性。它们并不总是清晰且连贯的。它们还可能包含许多重复和/或冲突的信息。自动化解决方案使用信息检索和机器学习技术来捕获此类异常;然而,当前的技术忽略了软件工件的语义或忽略了将领域知识集成到此过程中,因此往往会提供不精确和不准确的结果。在这个研究项目中,我们想提出一种使用深度学习将需求工件语义和领域知识纳入考虑的解决方案。我们的目标是尽可能准确、及时地捕获冲突和重复的需求。我们提出了一种利用词嵌入和卷积神经网络(CNN)模型来生成链接的网络架构。词嵌入学习表示领域语料库知识的词向量,CNN 使用这些词向量来学习需求工件的句子语义。我们将使用向量空间模型和潜在语义索引构建基线方法,以将我们提出的模型与最先进的模型以及 Watson Discovery 进行比较并使其符合要求。我们将使用 DOORS Next Generation 要求中的数据集。我们提出的模型可以进一步扩展,以建立设计要求和源代码之间的链接,从而实现完整的可追溯性矩阵。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bener, Ayse其他文献

A Frequency Based Encoding Technique for Transformation of Categorical Variables in Mixed IVF Dataset
Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods
  • DOI:
    10.1177/0272989x14535984
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Uyar, Asli;Bener, Ayse;Ciray, H. Nadir
  • 通讯作者:
    Ciray, H. Nadir
Physician experience in performing embryo transfers may affect outcome
  • DOI:
    10.1016/j.fertnstert.2010.10.036
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Uyar, Asli;Bener, Ayse;Bahceci, Mustafa
  • 通讯作者:
    Bahceci, Mustafa
A novel point of interest (POI) location based recommender system utilizing user location and web interactions

Bener, Ayse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bener, Ayse', 18)}}的其他基金

Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
  • 批准号:
    RGPIN-2017-05312
  • 财政年份:
    2022
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
  • 批准号:
    RGPIN-2017-05312
  • 财政年份:
    2021
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
  • 批准号:
    543936-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
  • 批准号:
    RGPIN-2017-05312
  • 财政年份:
    2020
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
  • 批准号:
    RGPIN-2017-05312
  • 财政年份:
    2019
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
  • 批准号:
    543936-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Collaborative Research and Development Grants
Test case prioritization
测试用例优先级
  • 批准号:
    499518-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Collaborative Research and Development Grants
Generating narratives from financial data using active learning
使用主动学习从财务数据中生成叙述
  • 批准号:
    531066-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Engage Grants Program
Recommender system empowered by contextual information
由上下文信息支持的推荐系统
  • 批准号:
    490782-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
  • 批准号:
    RGPIN-2017-05312
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Research on the developmental process of social cognition based on understanding similarities between self and others: A longitudinal study in the first twelve years of life
基于理解自我与他人相似性的社会认知发展过程研究——生命前十二年的纵向研究
  • 批准号:
    23H01035
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Accelerating drug repurposing for rare neurological, neurometabolic and neuromuscular disorders by exploiting SIMilarities in clinical and molecular PATHology
利用临床和分子病理学的相似性,加速罕见神经系统、神经代谢和神经肌肉疾病的药物再利用
  • 批准号:
    10077172
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    EU-Funded
Using various MRI paradigms to investigate the long term neurological effects of post-COVID syndrome and similarities to Alzheimer's Disease
使用各种 MRI 范例来研究新冠病毒后综合征的长期神经系统影响以及与阿尔茨海默氏病的相似性
  • 批准号:
    575718-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Using knowledge graphs and AI to recognize similarities between politicians
使用知识图和人工智能来识别政客之间的相似之处
  • 批准号:
    CCARD-2022-00156
  • 财政年份:
    2022
  • 资助金额:
    $ 4.95万
  • 项目类别:
    CCI Applied Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了