Recommender system empowered by contextual information
由上下文信息支持的推荐系统
基本信息
- 批准号:490782-2015
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is a collaborative effort between IBM Watson Analytics and the Data Science Laboratory at Ryerson University to build a recommender system empowered by contextual information. The fundamental question that a recommender system aims to answer is: "what does the end-user really want?" If the end-user does not know the answer to this question, s/he would benefit from using a recommender system. Our industrial partner - IBM Watson Analytics - is one of the global leaders in the field of recommender systems. IBM Watson Analytics provides cognitive technology processing information by understanding natural language, generating hypothesis based on evidence and learning as it goes. The major deliverable of this proposal is a software prototype recommender system empowered by contextual information that is compatible with the IBM Watson Analytics platform. This project is solution oriented in the sense that its solves an important problem for the flagship artificial intelligence product of our industrial partner - IBM Watson Analytics. IBM Watson is a question answering computer system capable of answering questions posed in natural language. One of the challenges that comes with Watson is how to make the best recommendations based on a limited amount of data, knowing that better recommendations lead to higher user engagements. Up until now, Watson does not use or leverage contextual information. It is with this problem in mind that IBM and that Data Science Laboratory came up with the solution of designing a recommender system empowered by contextual information. The end product will be a software prototype recommender system empowered by contextual information that increases the level of engagement and acts as a catalyst in ultimately helping the end-user find what s/he really wants.
该提案是 IBM Watson Analytics 和瑞尔森大学数据科学实验室之间的合作成果,旨在构建一个由上下文信息支持的推荐系统。推荐系统旨在回答的基本问题是:“最终用户真正想要什么?”如果最终用户不知道这个问题的答案,他/她将受益于使用推荐系统。我们的行业合作伙伴 - IBM Watson Analytics - 是推荐系统领域的全球领导者之一。 IBM Watson Analytics 提供认知技术,通过理解自然语言、基于证据生成假设并进行学习来处理信息。该提案的主要成果是一个由与 IBM Watson Analytics 平台兼容的上下文信息支持的软件原型推荐系统。该项目是面向解决方案的,因为它解决了我们的工业合作伙伴 IBM Watson Analytics 的旗舰人工智能产品的一个重要问题。 IBM Watson 是一个问答计算机系统,能够回答以自然语言提出的问题。 Watson 面临的挑战之一是如何根据有限的数据提出最佳推荐,并且知道更好的推荐会带来更高的用户参与度。到目前为止,Watson 尚未使用或利用上下文信息。正是考虑到这个问题,IBM 和数据科学实验室提出了设计由上下文信息支持的推荐系统的解决方案。最终产品将是一个由上下文信息支持的软件原型推荐系统,该系统可以提高参与度并最终帮助最终用户找到他/她真正想要的东西。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bener, Ayse其他文献
A Frequency Based Encoding Technique for Transformation of Categorical Variables in Mixed IVF Dataset
- DOI:
10.1109/iembs.2009.5334548 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:0
- 作者:
Uyar, Asli;Bener, Ayse;Bahceci, Mustafa - 通讯作者:
Bahceci, Mustafa
Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods
- DOI:
10.1177/0272989x14535984 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:3.6
- 作者:
Uyar, Asli;Bener, Ayse;Ciray, H. Nadir - 通讯作者:
Ciray, H. Nadir
Physician experience in performing embryo transfers may affect outcome
- DOI:
10.1016/j.fertnstert.2010.10.036 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:6.7
- 作者:
Uyar, Asli;Bener, Ayse;Bahceci, Mustafa - 通讯作者:
Bahceci, Mustafa
A novel point of interest (POI) location based recommender system utilizing user location and web interactions
- DOI:
10.1109/bigdataservice.2016.42 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:0
- 作者:
Habayeb, Mayy;Soltanifar, Behjat;Bener, Ayse - 通讯作者:
Bener, Ayse
Bener, Ayse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bener, Ayse', 18)}}的其他基金
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Test case prioritization
测试用例优先级
- 批准号:
499518-2016 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Generating narratives from financial data using active learning
使用主动学习从财务数据中生成叙述
- 批准号:
531066-2018 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
角茴香花粉配置策略对花粉精准传递和交配系统的影响
- 批准号:32360084
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
- 批准号:62301461
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑异质性、交互性、层次性的医联体系统效率评价理论、方法及应用
- 批准号:72371232
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2402311 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant