Data driven hybrid model identification for control and optimisation of petrochemical and refining plants

用于石化和炼油厂控制和优化的数据驱动混合模型识别

基本信息

  • 批准号:
    523634-2018
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Excellence in operation of process plants is attained by determining the best operating conditions (optimisation of operation) and controlling their real-time operation to maintain these best conditions. Such control and optimisation require accurate process models. Since 1970s there have been two separate streams of model development: (i) rigorous models derived from the first principles, and (ii) empirical models identified from plant data via methods developed in the automatic control community. The former usually require a large effort in deriving the first principles equations and construction of efficient algorithms for solving them. The latter have proceeded along the path of identifying empirical models from the plant operating data. Even though significant advances have been made, and there are many instances of very successful use of both types of models for optimisation and control, respectively, there are still many opportunities for improvement. For instance, identification of models for processes with large time delays During the last decade there have been significant advances in artificial intelligence methods for speech recognition, image recognition and classification, handwriting recognition etc. Foundation for these advances are deep neural networks comprised on many layers. It has been found that specific neural network structures are best at creating models for specific types of applications. This research proposes to identify very accurate models from operating data by developing specific model structures for specific types of processes. It will combine some first principles equations (e.g. mass and energy balances) with deep neural networks or with models developed via identification methods from the automatic control field. Models predicting both steady-state and dynamic behaviour will be developed, with particular attention devoted to models with large time delays (e.g. ethane/ethylene splitter). Having developed a "standard form" of the model for specific equipment will enable such models to be readily adjusted to represent specific equipment and be re-used.
通过确定最佳操作条件(优化),可以实现流程工厂的卓越运营 操作)并控制其实时操作以保持这些最佳条件。这样的控制和 优化需要准确的过程模型。 自 20 世纪 70 年代以来,出现了两个独立的模型开发流:(i)源自 第一原则,以及(ii)通过在植物数据中开发的方法确定的经验模型 自动控制社区。前者通常需要付出巨大的努力来推导第一原理 方程以及构建求解方程的有效算法。后者已经沿着这条路前进了 从工厂运行数据中识别经验模型。尽管已经取得了重大进展 制作,并且有许多非常成功地使用这两种模型进行优化和控制的实例, 分别还有很多改进的机会。例如,模型的识别 具有较大时间延迟的过程 在过去的十年中,人工智能语音方法取得了重大进展 识别、图像识别和分类、手写识别等。这些进步的基础 是由多层组成的深度神经网络。研究发现特定的神经网络结构 最擅长为特定类型的应用程序创建模型。这项研究建议非常准确地识别 通过为特定类型的流程开发特定的模型结构,从操作数据中建立模型。它将 将一些第一原理方程(例如质量和能量平衡)与深度神经网络或 通过自动控制领域的识别方法开发的模型。模型预测两者 将开发稳态和动态行为,特别关注具有大的模型 时间延迟(例如乙烷/乙烯分离器)。为特定的模型开发了“标准形式” 设备将使此类模型能够轻松调整以代表特定设备并重复使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahalec, Vladimir其他文献

Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution
利用变尺寸多目标差分演化重构卫星轨道以进行合作观测

Mahalec, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahalec, Vladimir', 18)}}的其他基金

Towards Zero GHG Emissions by Symbiotic Design and Operation of Industrial and Civic Entities
通过工业和民用实体的共生设计和运营实现温室气体零排放
  • 批准号:
    RGPIN-2022-04882
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
  • 批准号:
    523634-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
  • 批准号:
    523634-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
  • 批准号:
    341228-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
  • 批准号:
    341228-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
  • 批准号:
    341228-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
  • 批准号:
    341228-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

氨基供体驱动ω-转氨酶合成手性胺的适应性催化机制及理性设计研究
  • 批准号:
    22308137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据与知识驱动的湍流深度特征提取与本构关系建模
  • 批准号:
    12372288
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
冰期和海流驱动印太交汇区两种马尾藻多样性进化的模式与过程
  • 批准号:
    32371697
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Automatic quality assessment of waste plastic bales through hybrid sensing and data driven modelling
通过混合传感和数据驱动建模对废塑料包进行自动质量评估
  • 批准号:
    EP/W026228/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323547
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323548
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了