Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
基本信息
- 批准号:523634-2018
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Excellence in operation of process plants is attained by determining the best operating conditions (optimisation**of operation) and controlling their real-time operation to maintain these best conditions. Such control and**optimisation require accurate process models.**Since 1970s there have been two separate streams of model development: (i) rigorous models derived from**the first principles, and (ii) empirical models identified from plant data via methods developed in the**automatic control community. The former usually require a large effort in deriving the first principles**equations and construction of efficient algorithms for solving them. The latter have proceeded along the path**of identifying empirical models from the plant operating data. Even though significant advances have been**made, and there are many instances of very successful use of both types of models for optimisation and control,**respectively, there are still many opportunities for improvement. For instance, identification of models for**processes with large time delays**During the last decade there have been significant advances in artificial intelligence methods for speech**recognition, image recognition and classification, handwriting recognition etc. Foundation for these advances**are deep neural networks comprised on many layers. It has been found that specific neural network structures**are best at creating models for specific types of applications. This research proposes to identify very accurate**models from operating data by developing specific model structures for specific types of processes. It will**combine some first principles equations (e.g. mass and energy balances) with deep neural networks or with**models developed via identification methods from the automatic control field. Models predicting both**steady-state and dynamic behaviour will be developed, with particular attention devoted to models with large**time delays (e.g. ethane/ethylene splitter). Having developed a "standard form" of the model for specific**equipment will enable such models to be readily adjusted to represent specific equipment and be re-used.
通过确定最佳操作条件(操作的优化**)并控制其实时操作以维持这些最佳条件,从而实现了过程植物的卓越运营。这种控制和**优化需要准确的过程模型。前者通常需要付出巨大的努力来得出第一个原则**方程和构建有效算法以解决它们。后者已经沿着从工厂操作数据中识别经验模型的路径**进行。尽管已经取得了重大进展,并且分别非常成功地使用两种模型进行优化和控制,但仍有许多改进的机会。例如,在过去的十年中,识别具有大时延迟的过程的模型**在人工智能方法的语音方法**识别,图像识别和分类,手写识别等方面取得了重大进展。这些进步的基础**是深层的神经网络,在许多层上构成了深层的神经网络。已经发现,特定的神经网络结构**最好是为特定类型的应用程序创建模型。这项研究建议通过为特定类型的流程开发特定的模型结构来确定非常准确的**模型。它将**将一些第一原理方程(例如质量和能量平衡)与深神经网络或通过自动控制场的识别方法开发的**模型相结合。将开发预测**稳态和动态行为的模型,特别注意具有较大时间延迟的模型(例如乙烷/乙烯分离器)。为特定**设备开发了模型的“标准形式”,将使此类模型容易调整以表示特定的设备并重新使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Mahalec, Vladimir其他文献
Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution
利用变尺寸多目标差分演化重构卫星轨道以进行合作观测
- DOI:10.1016/j.ejor.2014.09.02510.1016/j.ejor.2014.09.025
- 发表时间:2015-04-012015-04-01
- 期刊:
- 影响因子:6.4
- 作者:Chen, Yingguo;Mahalec, Vladimir;Sun, KaiChen, Yingguo;Mahalec, Vladimir;Sun, Kai
- 通讯作者:Sun, KaiSun, Kai
共 1 条
- 1
Mahalec, Vladimir的其他基金
Towards Zero GHG Emissions by Symbiotic Design and Operation of Industrial and Civic Entities
通过工业和民用实体的共生设计和运营实现温室气体零排放
- 批准号:RGPIN-2022-04882RGPIN-2022-04882
- 财政年份:2022
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
- 批准号:523634-2018523634-2018
- 财政年份:2020
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Collaborative Research and Development GrantsCollaborative Research and Development Grants
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
- 批准号:523634-2018523634-2018
- 财政年份:2019
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Collaborative Research and Development GrantsCollaborative Research and Development Grants
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:341228-2007341228-2007
- 财政年份:2010
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:341228-2007341228-2007
- 财政年份:2009
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:341228-2007341228-2007
- 财政年份:2008
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:341228-2007341228-2007
- 财政年份:2007
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
相似国自然基金
数据驱动的持续集成测试加速技术研究
- 批准号:62372005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全范德华异质结中电场驱动离子迁移对磁性的调控研究
- 批准号:52371245
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
时空交互与社会化交互协同驱动的弱势道路使用者轨迹预测方法研究
- 批准号:52302501
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物酶自驱动外泌体马达的构建及应用研究
- 批准号:82372102
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
海南岛古树时空格局的演变与驱动机制
- 批准号:32360417
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:23446642344664
- 财政年份:2024
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Standard GrantStandard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:23247422324742
- 财政年份:2023
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:23235472323547
- 财政年份:2023
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Continuing GrantContinuing Grant
Automatic quality assessment of waste plastic bales through hybrid sensing and data driven modelling
通过混合传感和数据驱动建模对废塑料包进行自动质量评估
- 批准号:EP/W026228/1EP/W026228/1
- 财政年份:2023
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Research GrantResearch Grant
Building a data-driven educational improvement platform by supporting hybrid class design
支持混合班级设计,构建数据驱动的教育改进平台
- 批准号:23H0099223H00992
- 财政年份:2023
- 资助金额:$ 2.91万$ 2.91万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)